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Abstract. This thesis is about proving the functional correctness and
incorrectness of imperative, object-oriented programs. One of the main
approaches for the first item is deductive program verification, whereas
the second item is traditionally handled by techniques like testing. In this
thesis, we show how both correctness and incorrectness can be covered
by dynamic logic for Java (a program logic) and be handled using similar
techniques. The theorem prover KeY, which provides an implementation
of dynamic logic for Java, was used for experiments and was extended
for this purpose.
We introduce the concept of taclets, which is the rule language that is
used to implement the calculus for Java dynamic logic in KeY. Apart
from a detailed introduction of the language and complete definitions
of the semantics of taclets, reasoning about the correctness of taclets is
discussed. This part of the thesis is the most complete account on taclets
so far.
The concept of updates is described, which is the central component
for performing symbolic execution in Java dynamic logic. Updates are
systematically developed as an imperative programming language that
provides the following constructs: assignments, guards, sequential com-
position and bounded as well as unbounded parallel composition. The
language is equipped both with a denotational semantics and a correct
rewriting system for execution, whereby the latter is a generalisation of
the syntactic application of substitutions. The normalisation of updates
is discussed.
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1 Taclets by Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2 Schema Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1 The Kinds of Schema Variables in Detail . . . . . . . . . . . . . . . . . . . . . 38
2.2 Schematic Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3 Instantiation of Schema Variables and Expressions . . . . . . . . . . . . . 44
2.4 Substitutions Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5 Schema Variable Modifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.6 Schema Variable Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.7 Generic Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Instantiations and Metavariables—A Taster . . . . . . . . . . . . . . . . . . . . . . . 54
4 Systematic Introduction of Taclets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 The Taclet Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Context Assumptions: What has to be present in a sequent . . . . . 56
Find Pattern: To which expressions a taclet can be applied . . . . . 58
State Conditions: Where a taclet can be applied . . . . . . . . . . . . . . . 58
Variable Conditions: How schema variables may be instantiated . 60
Goal Templates: The effect of the taclet application . . . . . . . . . . . . 60
Rule Sets: How taclets are applied automatically . . . . . . . . . . . . . . 61

4.2 Well-Formedness Conditions on Taclets . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Implicit Bound Renaming and Avoidance of Collisions . . . . . . . . . 63
4.4 Applicability of Taclets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5 The Effect of a Taclet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.6 Taclets in Context: Taclet-Based Proofs . . . . . . . . . . . . . . . . . . . . . . 70

5 Reasoning about the Soundness of Taclets . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1 Soundness in Sequent Calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 A Basic Version of Meaning Formulae . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Meaning Formulae for Rewriting Taclets . . . . . . . . . . . . . . . . . . . . . 76
5.4 Meaning Formulae in the Presence of State Conditions . . . . . . . . . 77
5.5 Meaning Formulae for Nested Taclets . . . . . . . . . . . . . . . . . . . . . . . . 79
5.6 Elimination of Schema Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



Sequential, Parallel, and Quantified Updates of First-Order Structures . . . 89
Philipp Rümmer
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Introduction

This thesis is about proving the functional correctness and incorrectness of pro-
grams. One of the main approaches for the first item is deductive program ver-

ification, whereas the second item is traditionally handled by techniques like
testing. In this thesis, we show how both correctness and incorrectness can be
covered by dynamic logic for Java (a program logic) and be handled using sim-
ilar techniques. The theorem prover KeY, which provides an implementation
of dynamic logic for Java, was used for experiments and was extended for this
purpose.

Sect. 1 gives a short introduction to deductive verification and to testing,
and in particular the background to the third paper of this thesis (page 115).
Sect. 2 and 3 introduce first-order predicate logic and dynamic logic. Sect. 1.1
and 3 motivate the second paper of the thesis (page 89). Finally, Sect. 4 is a
short account on proof assistants and gives a background for the first paper of
the thesis (page 23).

1 Program Analysis

The topic of this thesis is to reason about the behaviour of programs. We focus
on a very specific area: the programs that we consider are imperative programs,
which means that the semantics of a program is centred around the notion of
states, and that the execution of a program consists of a series of state changes.
While this kind of programs is often considered as too low-level, i.e., too similar
to the technical details of a computer, it is the model of computation that is
most frequently used to write programs.

As a second choice, the programs that we investigate will be object-oriented,
which on the one hand means that programs can store data as a graph, the
heap, and on the other hand that the language conceptionally attaches behaviour
to pieces of data. For this thesis, the only important aspect of object-oriented
languages is the handling of heap and of linked datastructures. The same effects
as with heaps can already be observed when working with arrays: the number of
involved locations is in general unbounded, and it is not decidable whether two
program expressions denote the same or different locations (aliasing).

Although most parts of the thesis are independent of a particular program-
ming language and are meaningful for all (object-oriented, imperative) lan-
guages, the language that is used throughout the thesis is Java [1]. We do not
consider issues like concurrency, so that the treated fragment of Java mostly
corresponds to the JavaCard language [2].

Language Semantics The behaviour of an imperative program can be investi-
gated on different levels of detail. A denotational view will reduce a program
to its input-output-relation (I/O-relation), i.e., to the binary relation between
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pre-states and the post-states that can be reached by running the program. Be-
cause we only investigate deterministic programs, the I/O-relations are partial
functions, i.e., map a pre-state to at most one post-state. In this thesis, the be-
haviour of programs is always specified by stating properties of the I/O-relation.
The most common approach for such specifications are pre- and post-conditions,
which is a concept that, for instance, is essential for Design by Contract [3].

A second view on the semantics of programs is operational semantics. De-
scribing the operational meaning of an imperative programming language essen-
tially means writing an interpreter for the language. Because this is a compar-
atively simple task even for complicated languages, it is—in different flavours,
like for actual or for symbolic execution—often used as basis of program anal-
ysis. The execution of an imperative program consists of a sequence of state
transitions. When looking at these transitions one at a time, we see the small-

step operational semantics of the program. If all steps, from the beginning of
the execution until the (possible) termination of the program, are combined, we
are talking about the big-step operational semantics, which essentially coincides
with the I/O-relation of a program.

Denotational and operational models are equally important in this thesis:
while we specify programs by stating desired properties of their denotation, the
actual analysis of the programs is performed using an operational definition of the
language semantics. In this context, the second paper about updates (page 89)
discusses the topic of capturing the operational semantics of an imperative lan-
guage as rules of dynamic logic.

Specifications and Assertion Languages We need a language for describing prop-
erties of I/O-relations. In practice, often natural language is used, but in order
to mechanically reason about a program it is necessary to provide a formal

specification. The languages that this thesis concentrates on are based on clas-

sical first-order logic (see Sect. 2), extended with algebraic theories like natural
numbers and lists. When used for specification, this language often appears in
disguise and with an unusual syntax: specification languages that essentially
coincide with first-order logic are, for instance, the Java Modelling Language
(JML) [4] or the Object Constraint Language (OCL) [5]. For reasoning about
programs and specifications, this is mostly irrelevant. How first-order logic is
used in specifications is illustrated in Sect. 3.

It should be noted, that already the effort of creating a formal specification
is usually significant, even though specification languages are designed to be
easy to learn and to use. The lack of a tailor-made specification for a program
does not necessarily mean, however, that the techniques discussed here are not
applicable. It can be interesting to reason about standard properties that are
often not stated explicitly, like about termination or exception-freeness. Such
properties are one of the main application areas for deduction-based verification
systems and software model checkers.

Compile-Time Analysis Typically, one distinguishes between dynamic and static
analyses. The first approach works with information that is obtained by actu-
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ally running a program, whereas the second one gains information by directly
analysing program code (or just any suitable representation of a program). This
distinction is misleading, because (i) it is not clear whether symbolic execution
of a program should be regarded as dynamic or static, and (ii) the term “static
analysis” is often used only for a very special kind of analysis, e.g. not for pro-
gram verification.

In the present thesis, we rather distinguish between runtime and compile-time
methods, i.e., between methods that need to be carried out each time a program
is run and methods that work upfront. In this sense, all methods shown here are
compile-time methods.

Alternatives and Related Approaches The semantics based on an I/O-relation is
also called partial correctness model and has the property that it is not possible
to distinguish between non-termination and erroneous termination of programs.
A detailed discussion and further models are given in [6].

A third kind of programming language semantics is called axiomatic seman-

tics and is often regarded almost as a synonym for Hoare-style program verifi-
cation. Such semantics determine the meaning of programs indirectly through
rules or axioms of a logic that allow to derive properties of the program.

There are, of course, numerous kinds of formal specifications that are not
directly comparable with first-order logic: (i) A very popular method is to use the
programming language itself also for specification, which has the advantage that
specifications are executable. JML resembles this approach, but offers further
concepts like quantifiers that are not present in Java. Because of the limited
expressiveness of programming languages, a translation to first-order logic is
always possible but requires the same techniques as the actual verification of
programs. (ii) Languages like Z [7] or B [8] are based on set theory and are
strictly more expressive than first-order logic. (iii) Types are a general means of
specifying programs and range from simple datatypes to dependant types that
allow functional specifications. A language supporting such specifications is [9].
Whether this kind of specifications can be reduced to first-order logic depends on
the particular type system. (iv) Given an embedding of a programming language
in an arbitrary logic, this logic can be used for specification (and verification)
purposes. This is often done in higher-order proof systems like Isabelle/HOL
[10], Coq [11], or PVS [12].

1.1 Deductive Verification

In the following, we assume that we are given a program, together with a formal
specification that describes properties of the I/O-relation of the program. If the
correctness of the program wrt. the specification is of great importance, then it
can be necessary to verify the program, i.e., to find a mathematical/logical argu-
ment that entails that the program cannot violate the specification. Verification
is an intricate problem: (i) it is well-known that, in general, the correctness of a
program is not decidable, and furthermore (ii) for most kinds of specifications,
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verification of real-world programs is currently beyond the capabilities of auto-
mated tools. Likewise, interactive verification is a difficult and time-consuming
process.

This thesis concentrates on deductive verification, which is verification that
uses a proof procedure for a logic as backend. Deductive verification is one of
the main approaches to program verification. Using a logic raises the number of
involved formal languages to three (although some or all of the languages can
coincide): a programming language, a specification language and a logic in which
deduction takes place.

When trying to verify a program, we implicitly make a positive assumption:
the hypothesis is the correctness of the program, and through verification this
claim is supposed to be substantiated. Deductive verification systems are pri-
marily designed for this purpose. This does not mean that the failure to verify
a program is not helpful for finding a possible error (in the program or in the
specification). Unfortunately, not being able to verify a program does not entail
the presence of a bug, which is a consequence of the undecidability of correctness
(and the fact that soundness is usually considered as an important property).

Embeddings In order to verify a program deductively, it is necessary to draw a
connection between the programming language, the specification language and
the logic in which deduction takes place: translations have to be defined that
turn both the program and the specification into an expression of the logic. We
concentrate on the first case, the creation of an embedding of an object-oriented,
imperative programming language into a logic.

There are two main approaches for embedding a formal language into a logic,
which differ in the way in which the semantics of the language is represented:

– Creating a deep embedding means to formalise both the syntax and the
semantics of the language within the target logic. As an example, a deep
embedding of a programming language and its operational semantics would
essentially be an interpreter that is written in the target logic. Deep em-
beddings are mostly used to reason about the properties of programming
languages (“meta-reasoning” about programs), and are in most cases writ-
ten in higher-order frameworks that are expressive enough for capturing
the semantics of a language in a natural way. For the actual verification
of individual programs wrt. a specification, deep embeddings are rather a
disadvantage: the effort of creating a deep embedding is big, and using the
formalisation of a language semantics itself to determine the meaning of a
program is usually not very efficient. Cases in which deep embeddings are

used for verification are the deep embedding of the Java virtual machine
in ACL2 [13], the LOOP tool [14], and the EVT tool for verifying Erlang
programs [15] (although the deep embedding is here also used to derive more
efficient proof rules).

– A shallow embedding is established by defining a translation from the lan-
guage in question to the target logic outside of the target logic. For a pro-
gramming language, this translation would map programs to a representa-
tion of the meaning of the program within the target logic, e.g. to a formula
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describing the I/O-relation of the program. This means that the embedding
function knows about the semantics of the source language. A shallow em-
bedding is usually easier to realise than a deep embedding, and can be more
efficient for the actual verification. The downside is that a shallow embedding
cannot directly be used for meta-reasoning.

Again, in this thesis we focus on the case of shallow embedding. We find
this paradigm in a number of verification systems for imperative programming
languages (probably in most of them), although in very different flavours and
often somewhat hidden:

Verification Condition Generators Many tools, in particular automated ones,
contain a component called the verification condition generator (VCG), which
is a translator that takes a program and a specification and produces a formula
that can consequently be tackled using a theorem prover or an interactive proof
assistant. From a technical point of view, this means that the translation of
the programming language into a formula and the actual reasoning are strictly
separated. The essential correctness property of a VCG is that the produced
formula must only be valid if the program is correct wrt. the given specification.
We can prove a program correct by showing that the formula produced by a
correct VCG is valid. In this architecture, this is mostly done using automated
theorem provers, because the formulae that a VCG produces usually have only
little structure in common with the original program, and are, therefore, hard
to comprehend.

The analysis of a program when computing verification conditions is in most
cases very similar to the actual execution of the program, i.e., resembles the op-
erational semantics. A primary distinction that can be drawn is the direction of
the analysis, which can be either forwards or backwards. One of the most pop-
ular approaches is the classical weakest-precondition calculus (wp-calculus) [16],
which is a backwards analysis but still very near to the operational semantics.1

The wp-calculus is known for its surprising simplicity (at least for simple, aca-
demic languages), which can intuitively be explained with the facts that (i) when
starting with a post-condition and trying to derive the corresponding weakest
pre-condition, it is natural to start with the last statement of a program, and
(ii) when looking at a post-condition, substituting a term for a variable is equiva-
lent to assigning the value of the term to the variable (the substitution theorem),
which can be exploited in backwards reasoning. Examples of verification sys-
tems for imperative languages (in particular for Java) that use wp-calculus are
ESC/Java2 [17], Boogie [18], Jack [19], and Why [20] (which is used as backend
for the Krakatoa tool [21]).

Symbolic Execution An approach for creating verification conditions that uses
forward-reasoning—but that is otherwise very similar to wp-calculus—is sym-

bolic execution (SE) [22]. SE is one of the main topics of this thesis: the second

1 Initially, the wp-calculus is in fact introduced as predicate transformer semantics,
i.e., as an independent means of defining the semantics of a programming language.
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paper about updates (page 89) develops a formalism for carrying out SE in dy-
namic logic. SE works by executing an imperative program with symbolic initial
inputs. The values of variables during the execution are represented as terms
over the program inputs (in the original paper [22], as polynomials). The SE of
a program is in general not linear, because the values of branch predicates can-
not be decided, but can be visualised as a symbolic execution tree. Each node in
the tree represents a path from the program entry to one of the program state-
ments and shows the values of variables as well as a path condition (PC), which
is a predicate of the program inputs and determines whether an actual program
execution would follow the represented path. Fig. 1 shows, as an example, the
SE tree for the following program:

1
���

(p >= 0)

2 p = p+1;

3 �������
4 p = -p;

5

6
���

(p == 0)

7 r = 0;

8 �������
9 r = r/p;

While the wp-calculus works by modifying the post-condition and gradually
turns it into a weakest pre-condition, we can imagine that SE operates on the
pre-condition (which corresponds to the initial path condition and is simply
true in Fig. 1) and finally produces a strongest post-condition.2 This procedure
is, however, somewhat hidden in SE, because the modified pre-conditions are
stored in two parts: the path conditions and the symbolic variable assignment.
The separation avoids the inversion of right-hand sides of assignments during the
execution, which is, in principle, necessary to describe strongest post-conditions.
In order to illustrate this, we symbolically execute the simple program

1 p = p+1;

with the pre-condition (initial path condition) P ≥ 0:

p : P
PC: P ≥ 0 1

p : P + 1
PC: P ≥ 0

The actual strongest post-condition is obtained by inverting the term P + 1:

∃P ′. P = P ′ + 1 ∧ P ′ ≥ 0 ≡ P − 1 ≥ 0 ≡ P ≥ 1

2 Because the values of variables are stored explicitly during SE, it is also possible to
use symbolic execution for deriving weakest pre-conditions.
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PC: P < 0 ∧ −P 6= 0 9

p : −P, r : R/(−P )
PC: P < 0 ∧ −P 6= 0
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8 Program Analysis

Like the wp-calculus, SE itself can handle loops in programs only through
unrolling and needs to be supported by further techniques like induction or
invariants in general. This aspect is also discussed in the paper about updates
(page 89), where it is proposed to use a more general representation of the
symbolic program state in order to handle certain kinds of loops (more details
are given in [23]).

For the implementation of verification condition generators, SE is by far less
often used than the wp-calculus, although there are no striking reasons to prefer
one of the two techniques in this area. In contrast, some of the techniques used
in program logics like Hoare logics or dynamic logic can be identified as SE.
SE is also popular in the area of software model checking (e.g., [24–27]) or test
data generation (Sect. 1.2). One reason for this is the flexibility of only analysing
parts of a SE tree, and the possibility to detect unfeasible paths.

Program Logics Instead of separating the generation of verification conditions
and the actual reasoning, it is also possible to combine both aspects in one logic.
The calculus of such a logic contains both the VCG and a calculus for the un-
derlying logic. The most well-known examples are Hoare-style logics [28], which
exist for many imperative languages. Examples of verification systems that are
based on Hoare logics for Java are Jive [29] and the system developed as part of
Bali [30]. A further program logic is dynamic logic [31], which strongly resembles
Hoare logics and is described in more detail in Sect. 3. Strictly speaking, Hoare
logics and dynamic logic are examples for a shallow embedding of a program-
ming language, because the semantics of the language is not formalised on the
object level of the target logic. The practical difference to an architecture with
a separate VCG is that the translation of the program into the logic can be per-
formed lazily, it is not necessary to translate the whole program in one go. This
is advantageous for interactive verification, because the structure of a program
can be preserved as long as possible.

Program analysis in Hoare logics can be performed both in forward and
backward direction, and can to a certain degree be seen as a simulation of either
symbolic execution or the wp-calculus. A difference to both techniques3 is that
the usage of intermediate assertions in Hoare proofs (annotated programs) allows
to reduce proof branching, because the splitting that is necessary to handle
conditional statements in a program can be localised.

Heap Representation Both wp-calculus and SE as well as many program logics
were initially only formulated for programs without heap or arrays, i.e., for
programs whose state is completely determined by the values of the program
variables. Program variables can comparatively simply be carried over to a logic
and be handled using logical variables or constants, as it is illustrated in the
paragraph about symbolic execution above. Handling the heap of a program,
which can be seen as a mapping from addresses to values, is more intricate. Two
main approaches for representing heap in a first-order logic are:

3 An optimisation of the wp-calculus that leads to a similar effect is described in [32].
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– Because a heap has to property of being unbounded, but finite, it can be
modelled through algebraic datatypes like lists, arrays [33, 34], or through
more specialised types. This approach is used in ESC/Java2 [17], Boogie
[18], Krakatoa [21], and KIV [35].

– The heap can directly be represented as a first-order structure, i.e., by choos-
ing an appropriate vocabulary that represents arrays as functions mapping
indexes to values, etc. This approach is chosen in Jack [19] and KeY [36], but
also the memory model of separation logic [37] falls into this category. The
paper about updates (page 89) in this thesis introduces the main formalism
that is used in KeY for modifying the heap.

This distinction resembles the earlier categorisation in deep embeddings and
shallow embeddings. The second approach has the disadvantages that arbitrary
quantification of program states is not directly possible (in first-order logic), and
that additional effort is needed to express well-formedness properties like the
existence of only finitely many objects. As an advantage of the second approach,
on the other hand, heap accesses can be translated more directly to logical
expressions (examples are given in the paper about updates, page 89), which is
convenient for interactive verification.

A method for working around the limitation of not being able to quantify
over program states is described in the third paper about incorrectness proofs
(page 115). Conceptually, the paper shows how the first and the second approach
to heap representation can be related using updates.

1.2 Testing

As a second approach to program analysis, we shortly describe methods for
generating test data in order to analyse the behaviour of programs. Given a
program and/or a specification, such methods produce concrete program inputs
on which the program can be run. By observing the output of the program, one
then decides whether the behaviour is correct or not. Although testing is also
used to examine whether a program is correct, the premisses are different from
those of deductive verification. Testing is a search for program inputs for which a
program behaves wrongly, which means that it is an attempt to substantiate the
hypothesis that the program is incorrect. At the same time, testing can (apart
from special cases) not prove that programs are correct. In this sense, testing is
the opposite of program verification.

The notion of testing as a whole is not directly comparable to deductive
verification, it is more general: test data can also be produced by hand or in
cases where no formal specification of a program exists. In this regard, we can
see testing as a complementary method to verification that can, for instance,
also help to validate a specification. In this thesis, however, we concentrate on
methods for automatically creating test data. Traditionally, two approaches are
distinguished:

Specification-Based Testing Following this approach, the generation of test data
is driven by an analysis of the specification of a program. In its purest form,
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specification-based testing does not analyse the actual program and is therefore
also called black-box testing. Instead, a specification (or model) of the program,
for instance pre- and post-conditions, are used to guess program inputs and to
evaluate whether the corresponding program outputs are correct. The program
inputs can, for instance, be generated so that all classes of program inputs (up
to a suitable notion of isomorphism) that are allowed by the pre-condition are
covered (e.g. [38, 39]). Also the generation of random program inputs is common
(e.g. [40]).

Implementation-Based Testing The other extreme is to generate test data by
analysing the program and ignoring the specification, which is also known as
white-box testing. Such techniques select test data with the goal of optimising
coverage criteria, like that all statements of the program are executed by some
test case (statement coverage) or that all branches of conditional statements are
taken (branch coverage). This is achieved, besides others, by means of symbolic
execution and constraint solving. A survey of coverage criteria and methods is
given in [41].

Although implementation-based testing does, in its purest form, not refer to
an explicit specification of a program (like pre- and post-conditions), it still has
the purpose of ensuring that the program behaves correctly: by testing whether
a program terminates properly, raises executions or reaches violated assertions,
a specification is reintroduced through the back door.

The third paper of this thesis about incorrectness proofs (page 115) discusses
how deductive verification based on dynamic logic can be used to find bugs in
programs. Depending on the proof strategy that is used, this method can simu-
late both specification-based and implementation-based testing, or can combine
both methods. The method is also able to find classes of program inputs that
reveal bugs instead of only concrete program inputs.

2 First-Order Predicate Logic

The base logic for verifying programs in this thesis is always classical first-

order predicate logic (FOL). A general introduction to this kind of logic is [42].
FOL goes beyond propositional logic by introducing the notion of individuals or
objects, which are explicitly described using functions and terms and implicitly
using predicates and formulae. Quantifiers allow to state properties that are sup-
posed to hold for all or for some individuals. FOL is strictly more expressive than
propositional logic: the validity of a first-order formula is only semi-decidable.
On the other hand, FOL does not allow quantification over functions or sets
of individuals (higher-order quantification), which entails that its expressiveness
is strictly less than that of higher-order logics. As a consequence, FOL allows
comparatively efficient automated reasoning: the majority of automated proving
in deductive verification tools is carried out in FOL.

For deductive program verification, the expressiveness of pure FOL is not suf-
ficient: Turing-complete programming languages inherently contain fixed-point
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principles (loops or recursion), which do not exist in FOL. Furthermore, algebraic
datatypes (like arithmetic, lists or arrays) that are common in programming lan-
guages cannot be specified in FOL. This entails that an adequate and correct
embedding of programming languages in pure FOL is not possible. Fortunately,
FOL does not lack “much” for handling programming languages: it is enough to
add principles like Peano arithmetic to make FOL sufficiently powerful (but still
by far less expressive that higher-order logic). For the simple while-language, re-
lated completeness results for Hoare-style logics and for dynamic logic are given
in [43, 31]. Completeness results for objects-oriented languages are presented in
[30, 44].

Proving and Disproving Compared to many other logics, reasoning about for-
mulae in FOL has an asymmetric character: while the validity problem in FOL
is semi-decidable (the set of valid formulae is recursively enumerable), the satis-
fiability problem is more difficult and not even semi-decidable. A different view
on this phenomenon is as follows: in a FOL formula, the considered universe
as well as predicate and function symbols are implicitly universally quantified.
In order to show that a formula is not valid (to show that the negation of the
formula is satisfiable), this implicit quantification would have to be turned into
an explicit existential second-order quantification, which is not possible in FOL.

Consequently, for proving (showing the validity of a formula) and disproving

(showing that a formula is not valid) different approaches are common. Ap-
proaches to proving are often based on calculi like resolution or tableaux [45],
or (in case of provers that are used for deductive verification) on a combina-
tion of propositional calculi, decision procedures for theories and heuristics for
handling quantifiers (the most well-known example is Simplify [46]). For disprov-
ing, the most successful methods are based on the construction of finite models
(e.g. [47]), or on heuristics that predict when the proof search of resolution- or
tableaux-based provers has failed and can be stopped.

The situation is somewhat different when FOL is combined with algebraic
datatypes, which is exploited in the third paper of the thesis about showing the
incorrectness of programs (page 115). Generally, disproving is more difficult than
proving due to the presence of loose function or predicate symbols (functions or
predicates whose meaning is not uniquely defined by axioms), which represent
implicit second-order quantification. When algebraic datatypes are available,
however, it is often not necessary to introduce such functions or predicates:
algebraic datatypes can be used to represent finite mappings or finite sets, which
suffice in many situations. In Sect. 1.1, for instance, it is discussed that the heap
of object-oriented programs can either be represented with datatypes or using
loose functions. The datatype solution suits disproving better, because explicit
(existential) quantification can be used. In this context, disproving can be as
easy or difficult as proving.

2.1 Sequent and Tableaux Calculi

One of the main classes of calculi for classical first-order logics are Gentzen-style
sequent or tableaux calculi [48, 49]. The two kinds of calculi are in most regards
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equivalent. While the tableaux representation is more popular in the area of
automated theorem proving, interactive proof assistants are more often based
on sequent calculi, and in this thesis we will only use sequent-notation. Sequent
calculi are also more common when working with non-classical logics that are
based on FOL, like with dynamic logic (Sect. 3).

In a sequent calculus, the validity of a formula is shown by systematically
turning the formula into conjunctive normalform and by showing that each of
the conjuncts (which are written as sequents Γ ` ∆) is valid. The third paper
of the thesis (page 115) gives examples for sequent calculus rules for FOL.

Metavariables The main issue when searching for proofs in sequent calculi for
FOL is the construction of the right instances of quantified formulae, i.e., of the
right terms t that have to be substituted for the variable in a formula ∀x. φ(x).
A standard technique for finding the required instances are metavariables (which
are in the tableaux community called free variables), place-holders X that are
inserted instead of concrete terms t and that can—at a later point—be replaced
(substituted) with t. This effectively postpones the problem of choosing the term t
and turns it into the problem of deciding when and which substitutions should
be applied.

The standard technique for solving this new problem is to use unification
for finding substitution candidates, and backtracking (as a part of depth-first
search) in order to undo substitutions that appear misleading at a later point.
An example is the following proof (attempt), in which the metavariable X is
used as a place-holder for the witness that is needed to prove the existentially
quantified formula:

` X = c, X = d

` X = c ∨X = d
∨r

` f(c) = f(X)

` (X = c ∨X = d) ∧ f(c) = f(X), . . .
∧r

` ∃x. ((x = c ∨ x = d) ∧ f(c) = f(x))
∃r

At this point, it can be read off from the two top-most sequents that the proof
can be closed by applying the substitution {X 7→ c}. It can also be seen, however,
that finding the right substitution is not always a simple task. When trying to
use the equation X = d for closing the left branch, applying the substitution
{X 7→ d}, a dead end would be reached and it would be necessary to backtrack
or to introduce further metavariables and instances of the quantified formula.

Incremental Closure In [42, 50], an alternative to the destructive application of
substitutions is discussed, which removes the need for backtracking. The method
works by collecting substitution candidates for the individual proof branches,
without immediately applying the substitutions. The avoidance of backtracking
is, in particular, advantageous for proof systems that can be used both automat-
ically and interactively. Empirical results [50] show that it can also be a basis
for realising automated state-of-the-art theorem provers. Incremental closure is
extensively used in the third paper of the thesis about showing the incorrectness
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of programs (page 115), where constraints describe pre-states (program inputs)
that reveal bugs in a program.

For the left branch in the previous example, here two unification constraints

are derived as substitution candidates and stored for this branch. Analogously,
one constraint is created for the right branch:

[X ≡ c ], [X ≡ d ]

` X = c, X = d

` X = c ∨X = d
∨r

[ f(c) ≡ f(X) ]

` f(c) = f(X)

` (X = c ∨X = d) ∧ f(c) = f(X), . . .
∧r

` ∃x. ((x = c ∨ x = d) ∧ f(c) = f(x))
∃r

In order to close the whole proof, it is now necessary to find constraints for all
open branches that are compatible, which in this case are the two constraints
X ≡ c and f(c) ≡ f(X). The constraint X ≡ c ∧ f(c) ≡ f(X) is consistent and
is solved by the substitution (the unifier) {X 7→ c} that is already known.

3 Dynamic Logic for Java

First-order dynamic logic (DL) [31] is a multi-modal extension of classical first-
order predicate logic that is designed for reasoning about the I/O-relation of
programs. The logic is comparable to Hoare-style logics and can be used for
program verification in a very similar manner. DL contains two classes of modal
operators: diamond formulae 〈α〉φ express that the formula φ holds in at least one
final state of program α. This means that 〈α〉φ can only be true if α terminates.
Box formulae can be regarded as abbreviations [α]φ ≡ ¬〈α〉¬φ, and express that
the formula φ holds in all final states of the program α. The approach of con-
sidering programs as modal operators makes DL more flexible than Hoare-style
logics, because modal operators can be nested arbitrarily with propositional con-
nectives or quantifiers. It is also possible to make statements that involve more
than one program, for instance can the pre- or post-conditions of a specifica-
tion again contain programs. Examples for verification systems for Java that are
based on DL are KIV [51] and KeY [36].

DL can be used for specifying programs in a manner similar to Hoare logics.
A formula φ→ 〈α〉ψ expresses the total correctness of the program α wrt. the
pre-condition φ and the post-condition ψ (provided that α is deterministic).
Likewise, φ → [α]ψ states the partial correctness of α: it is not required that α
terminates. The partial correctness judgement φ→ [α]ψ corresponds to a Hoare
triple {φ}α{ψ}. In both DL formulae, the pre- and post-conditions φ and ψ can
be arbitrary formulae of FOL, or can again contain programs.

Symbolic Execution On an intuitive level (and for deterministic programs), there
is a strong correspondence between DL and the wp-calculus (Sect. 1.1): the for-
mula 〈α〉φ is the weakest pre-condition for the program α with post-condition φ.
This analogy shows that the wp-calculus can directly be used as a calculus for
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DL. Indeed, the Hilbert-style calculi for DL that are given in [31] can be identified
as wp-calculus.

Nevertheless, the more common approach to reason in DL is symbolic exe-
cution (SE) and program analysis in forward direction (Sect. 1.1). When using a
sequent calculus for DL to symbolically execute a program, path conditions can
naturally be stored as side-formulae in the sequents. There are, however, dif-
ferent possibilities for representing the symbolic variable assignments that have
to be maintained during SE. One way is to store variable assignments as equa-
tions, which means to implicitly carry out the inversion of right-hand sides of
assignments that is shown in Sect. 1.1. This leads to the following assignment
rule:

Γ [v/v′], v = E[v/v′] ` φ, ∆[v/v′]

Γ ` 〈v = E〉φ,∆
v′ fresh

The article [35] presents a calculus for DL for JavaCard (based on the verification
system KIV) that uses an assignment rule like this.

The second paper (page 89) of this thesis discusses the alternative approach
that is used in KeY for handling variable assignments. Updates describe a set of
assignments to program variables or to function symbols, with the result that
the proof trees in a sequent calculus for DL almost directly correspond to SE
trees as in Fig. 1. The assignment rule in a calculus with updates looks as follows:

Γ ` {u ; v := E} φ,∆

Γ ` {u} 〈v = E〉φ,∆

In this setting, the actual program is preceded by an update u that determines
the values of variables (or of the heap). An assignment v = E is carried out by
sequentially composing it with u. As an example, Fig. 2 shows how the program
on page 6 can be symbolically executing in the resulting sequent calculus with
updates. Generally, the first assignment rule (using equations) leads to a calcu-
lus the produces strongest post-conditions for given pre-conditions, whereas the
second assignment rule with updates leads to a calculus that computes weakest
pre-conditions for the given post-conditions of programs.

4 Implementation of Proof Assistants

Program logics like dynamic logic are typically implemented as proof assistants,
in a similar manner as it is done for higher-order logics. In contrast to automated
theorem provers, such systems are mainly used interactively, but usually offer
also some degree of automation. Proof assistants also tend to provide a large
number of rules (which can be derived rules or axioms) that need to be made
accessible for the user.

“Pure” Proof Assistants There is a long history of rigorously implementing proof
assistants based on a small number of axioms (like higher-order logic, set theory
or type theory) and a meta-languages [52]. The first system to be designed
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Fig. 2. Proof tree in a sequent calculus for dynamic logic using updates. The derivation
resembles the SE tree of Fig. 1, the program is the one shown on page 6. We use the
abbreviation β for the program if (p = 0) r = 0; else r = r/p;. The post-condition φ
can be an arbitrary formula.
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like this was Edinburgh LCF, for which the functional programming language
ML was invented as meta-language. Tactics, in this context, are ML functions
operating on proof goals that can be invoked for goal-directed proof construction.
Because it is possible to combine tactics arbitrarily (using ML) in order to create
new tactics that realise larger proof steps or proof search, tactical systems are
very flexible, but also non-trivial to use. Furthermore, the concept of creating
a large number of composed and complex rules from a small initial set of rules
prohibits unsoundness at at early stage and has proven to be extremely reliable.
Further examples for pure proof assistants are Isabelle/HOL [10], Coq [11], and
Nuprl [53].

“Pragmatic” Proof Assistants There are also proof assistants that follow a less
rigorous and more pragmatic approach, in which it is possible to rather freely
introduce new axioms instead of deducing everything from first principles. The
most well-known example for such assistants is PVS [12], but also KeY [36]
follows this approach. Such provers allow to introduce and define new domains
typically faster than “pure” proof assistants, but it can be difficult to ensure the
consistency of introduced rules.

The first paper (page 23) introduces taclets, which form the rule language
that is used in the prover KeY. Taclets can be used both to introduce new
axioms and to define lemmas that are derivable from existing rules. The paper
also describes how it is possible to reason about the soundness of taclets, which
can be employed to cross-validate taclets by comparing them with alternative
axiomatisations of domains (like the semantics of a programming language), or
to derive lemmas from other taclets.

5 Overview

Paper 1: Taclets — A Language for Sequent Calculi

We introduce the concept of taclets, which is the rule language that is used to
implement the calculus for Java dynamic logic [54] in KeY [36]. Apart from a
detailed introduction of the language and complete definitions of the semantics
of taclets, reasoning about the correctness of taclets is discussed. The paper
is the most complete account on taclets so far and examines and documents
features that have been developed and implemented over the last years by the
KeY project, in parts by the author.

The paper is in parts based on the journal article [55] and the workshop
paper [56], which are coauthored by this author.

This paper is going to appear as the chapter “Construction of Proofs” in
the forthcoming book “Verification of Object-Oriented Software: The KeY Ap-
proach”, edited by Bernhard Beckert, Reiner Hähnle and Peter H. Schmitt,
Springer LNCS.
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Paper 2: Sequential, Parallel, and Quantified Updates of First-Order

Structures

This paper describes the concept of updates, which is the central component for
performing symbolic execution in Java dynamic logic [54]. Updates are system-
atically developed as an imperative programming language that provides the
following constructs: assignments, guards, sequential composition and bounded
as well as unbounded parallel composition. The language is equipped both with
a denotational semantics and a correct rewriting system for execution, whereby
the latter is a generalisation of the syntactic application of substitutions. The
normalisation of updates is discussed. All results and the complete theory of up-
dates have been formalised and proven using the Isabelle/HOL proof assistant
[10].

This paper is an extended version of the paper accepted at the 13th Inter-
national Conference on Logic for Programming, Artificial Intelligence and Rea-
soning (LPAR), Phnom Penh, Cambodia, which will appear in Springer LNCS.

Paper 3: Proving Programs Incorrect using a Sequent Calculus for

Java Dynamic Logic

In this paper, we use Java dynamic logic to prove the incorrectness of pro-
grams. In order to carry out disproving in Java dynamic logic, we use the con-
cept of quantified updates together with existential quantification over algebraic
datatypes. We show that this approach, carried out in a sequent calculus for
dynamic logic, creates a connection between calculi and proof procedures for
program verification and test data generation procedures. In comparison, start-
ing with a program logic enables to find more general and more complicated
counterexamples for the correctness of programs.

This paper has been written together with Muhammad Ali Shah, and is
in parts based on the Master’s thesis of Muhammad Ali Shah [57], who was
supervised by the author, and on the workshop paper [58] by the author. The
paper has been submitted to the International Conference on Tests And Proofs
(TAP), ETH Zürich, Switzerland.
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Abstract. We introduce the concept of taclets, which is the rule lan-
guage that is used to implement the calculus for JAVA dynamic logic [1]
in KeY. Apart from a detailed introduction of the language and complete
definitions of the semantics of taclets, reasoning about the correctness of
taclets is discussed. The paper is the most complete account on taclets
in KeY so far.

The primary means of reasoning in a logic like first-order predicate logic or
dynamic logic (DL) are calculi, collections of purely syntactic operations that
allow us to determine whether a given formula is valid. Having such calculi at
hand enables us in principle to create proofs of arbitrarily complex conjectures,
using pen and paper, but it is obvious that we need computer support for all
realistic applications. Such a mechanised proof assistant primarily helps us in
two respects: 1. The assistant ensures that rules are applied correctly, e.g., that
rules can only be applied if their side-conditions are not violated, and 2. the
assistant can provide guidance for selecting the right rules. Whereas the first
point is a necessity for making calculi and proofs meaningful, the second item
covers a whole spectrum from simple analyses to determine which rules are
applicable in a certain situation to the complete automation that is possible for
many first-order problems.

Creating a proof assistant requires formalising the rules that the implemented
calculus consists of. In our setting—in particular looking at calculi for dynamic
logic [2]—such a formalisation is subject to a number of requirements:

– JAVA CARD DL has a complex syntax (subsuming the actual JAVA CARD lan-
guage) and a large number of rules: first-order rules, rules for the reduction
of programs and rules that belong to theories like integer arithmetic. Besides
that, in many situations it is necessary to introduce derived rules (lemmas)
that are more convenient or that are tailored to a particular complex proof.
This motivates the need for a language in which new rules can easily be
written, rather than hard-coding rules as it is done in high-performance au-
tomated provers. It is also necessary to ensure the soundness of lemmas, i.e.,
we need a mechanised way to reason about the soundness of rules.

– Because complete automation is impossible for most aspects of program ver-
ification, the formalisation has to support interactive theorem proving. KeY
provides a graphical user interface (GUI) that makes most rules applicable
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only using mouse clicks and drag and drop. This puts a limit on the complex-
ity that a single rule should have for keeping the required user interaction
clear and simple, and it requires that rules also contain “pragmatic” infor-
mation that describes how the rules are supposed to be applied. An accounts
on the user interface in KeY is [3].

– The formalisation also has to enable the automation of as many proof tasks
as possible. This covers the simplification of formulae and proof goals, the
symbolic execution of programs (which usually does not require user interac-
tion) as well as automated proof or decision procedures for simpler fragments
of the logic and for theories. The approach followed in KeY is to have global
strategies that give priorities to the different applicable rules and automati-
cally apply the rule that is considered most suitable. This concept is powerful
enough to implement complete proof procedures for first-order logic1 and to
handle theories like linear integer arithmetic or polynomial rings mostly au-
tomatically.

This chapter is devoted to the formalism called taclets that is used in KeY
to meet these requirements. The concept of taclets provides a notation for
rules of sequent calculi, which has an expressiveness comparable to the com-
mon “textbook-notation” (like in Fig. 3 below), while being more formal. Com-
pared to textbook-notation, taclets inherently limit the degrees of freedom (non-
determinism) that a rule can have, which is important to clarify user interaction.
Furthermore, an application mechanism—the semantics of taclets—is provided
that describes when taclets can be applied and what the effect of an application
is.

Historically, taclets have first been devised in [5, 6] as “Schematic Theory
Specific Rules”, with the main purpose of capturing the axioms of theories and
algebraic specifications as rules. The language is general enough, however, to
also cover all rules of a first-order sequent calculus and most rules of calculi
for dynamic logic. The development of taclets as a way to build interactive
provers was influenced to a large degree by the theorem prover InterACT [7],
but also has strong roots in more traditional methods like tactics and derived
rules that are commonly used for higher-order logics (examples for such systems
are Isabelle/HOL, see [8], Coq, see [9], or PVS, see [10]). Compared to tactics,
the expressiveness of taclets is very limited, for the reasons mentioned above. A
further difference is that taclets do not (explicitly) build on a small and fixed set
of primitive rules, as tactics do in (foundational) higher-order frameworks like
Isabelle, but that a rather large number of taclets is considered as axioms that
are simply assumed.

A recent conceptual introduction to taclets is given by [11]. The article lacks,
however, many details of how taclets currently are used in KeY, because the taclet
concept has constantly been extended over the last years in order to implement
the rules of JAVA CARD DL. This chapter gives a more comprehensive description
of taclets as they now exist in KeY, and also includes features that were only

1 KeY does not use backtracking, the implemented procedure rather follows the non-
destructive approach of [4].
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KeY���������
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{

integer exp(integer, integer);

}�����
�������������������������
{��	����
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integer a, b;

}�����������
{

expZero {
���������

(exp(a, 0))
������ ���������!���	��

(1) };

expSucc {
���������

(exp(a, b))
���
������"� �����	���#���$����
������ ���������!���	��

(a * exp(a, b-1));�������
(==> b > 0) };

}

KeY

Fig. 1. Axiomatisation of an Exponentiation Function on Integers using Taclets

added recently. At the same time, even in the scope of this chapter many details
had to be left out.

When would a KeY User introduce own Taclets? or
When to read this Chapter?

In most cases it is not necessary for a user of the theorem prover KeY to define
taclets, because KeY already comes with complete implementations of the calculi
for first-order and dynamic logic. There are, nevertheless, situations when the
introduction of new taclets can be valuable:

– The introduction of lemmas, i.e., of non-axiom taclets that can be derived
from existing rules, can help to structure complex proofs. Such taclets can
be written to an external file and be loaded on demand. When lemmas are
loaded, proof obligations that ensure soundness (⇒ Sect. 5) are automatically
created by KeY as new proof tasks and have to be proven using already
existing taclets. This means that lemmas only can add convenience, but do
not increase the set of derivable formulae. Instead of applying lemmas, one
could as well apply more basic rules, but this usually leads to a longer and
more intricate proof. Typical examples are lemmas about complex arithmetic
transformations.

– Assumptions under which a conjecture is to be proven can be formulated as
taclets. For verifying an algorithm, we might, for instance, want to introduce
an exponentiation function exp through the clauses

exp(a, 0) = 1, exp(a, b) = a · exp(a, b− 1) (b > 0)

While the two equations can, in principle, simply be added as (quantified)
formulae to the conjecture in question, having a large number of such defi-
nitions would clutter proofs and would also be very tedious to apply. Fig. 1
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KeY�����
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integer a, b, c;

}�����������
{

expSplit {
���������

(exp(a, b))
���
������"� �����	���#���$����
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(exp(a, b-c) * exp(a, c));�������
(==> c >= 0);�������
(==> b >= c) };

}

KeY

Fig. 2. Lemma for the Exponentiation Function

shows how exp can instead be defined with two simple taclets that can be
used in a proof exactly like the ordinary rules of a calculus. The keywords
and clauses of the taclets are explained in detail later in this chapter (⇒
Sect. 4).
Note, that the two taclets of Fig. 1 are not lemmas but axioms : the normal
rules of a calculus will not tell us anything about the function exp and will
in particular not entail that exp actually describes exponentiation. For this
reason, such axioms cannot be loaded on demand while proving but have to
be defined as part of a problem file that can be loaded by KeY. Based on the
axioms, in turn, lemmas can be defined, loaded at a later point, and then
also proven correct. An example for such a lemma is the following identity
(the corresponding taclet is shown in Fig. 2):

exp(a, b) = exp(a, b− c) · exp(a, c) (c ≥ 0, b ≥ c)

– More generally, new theories can be defined and axiomatised through ap-
propriate taclets, which is the original intention of the taclet concept. This
is described in more detail by [5, 6]. Typical examples would be algebraic
datatypes like lists, finite sets or trees, the laws of which can naturally be
captured with taclets.

The next pages will give all information that is required to write taclets for these
purposes. In the whole chapter, we assume that the reader already knows about
sequents Γ ` ∆ and about their meaning, for an introduction see [12].

Organisation of the Chapter

We continue with introducing the concepts and keywords of taclets informally in
Sect. 1: we look at number of taclets that implement rules for first-order logic and
dynamic logic. After that, Sect. 2 provides a complete account on schema vari-
ables. The two sections (Sect. 1 and 2) together with Sect. 3 about metavariables
contain all practical information that is necessary for developing new taclets. An
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in-depth introduction of the taclet language and a discussion of the soundness
aspect of taclets are given in the two remaining sections (Sect. 4 and 5).

1 Taclets by Example

The next pages give a tour through the taclet language and illustrate the most
important features with examples. We organise the section along logics of in-
creasing complexity: 1. propositional logic, the fragment of first-order predicate
logic that is obtained by removing quantifiers, variables and terms, 2. first-order
predicate logic, and 3. dynamic logic for JAVA CARD (JAVA CARD DL). Many
of the taclets discussed here correspond to rules that are given in Fig. 3. As a
convention, in this chapter we use typewriter both for schema variables (in
order to distinguish them from normal variables x, y) and for taclet names (to
distinguish them from rules like allLeft).

Propositional Rules as Taclets

The first example is the taclet close (⇒ Fig. 4) representing an axiom that
closes a branch of a proof (corresponding to rule close in Fig. 3). It can be
applied whenever the sequent of a proof leaf contains the same formula both in
antecedent and succedent. The taclet makes use of two different keywords of the
taclet language:

– \assumes imposes a condition on the applicability of the taclet and has a
sequent as parameter. In the case of close, the \assumes clause states that
the taclet must only be applied if an arbitrary formula phi appears both in
antecedent and succedent of a sequent (the sequent may very well contain
further formulae).

– \closegoal specifies that an application of the taclet closes a proof branch.

The expression in an \assumes clause (like all expressions that turn up in a
taclet) may contain schema variables like the variable phi. A schema variable
has a kind that defines which expressions the variable can stand for (a precise
definition is given in Sect. 2). In our example, phi represents an arbitrary for-
mula. More generally, the taclet language provides schema variables that are
necessary for all first-order logics, e.g. kinds for matching variables, terms, and
formulae. Further kinds are necessary for rules of dynamic logic and enable vari-
ables representing program entities (like JAVA statements or expressions).

Note 1. The keywords of the taclet language reflect the direction in which se-
quent calculus proofs are constructed: we start with a formula that is supposed
to be proven and create a tree upwards by analysing the formula and taking it
apart. Taclets describe expansion steps (or, as a border case, closure steps), and
by the application of a taclet we mean the process of adding new nodes to a leaf
of a proof tree following this description.



28 Taclets by Example

impRight
Γ, φ ` ψ,∆

Γ ` φ→ ψ,∆
impLeft

Γ ` φ,∆ Γ, ψ ` ∆

Γ, φ→ ψ ` ∆

allRight
Γ ` [x/c](φ), ∆

Γ ` ∀x.φ,∆
with c a new constant of type A,

if x : A.

allLeft
Γ, ∀x.φ, [x/t](φ) ` ∆

Γ, ∀x.φ ` ∆
with t a ground term of type A′,

A′ v A, if x : A.

exLeft
Γ, [x/c](φ) ` ∆

Γ, ∃x.φ ` ∆
with c a new constant of type A,

if x : A.

exRight
Γ ` ∃x.φ, [x/t](φ), ∆

Γ ` ∃x.φ,∆
with t a ground term of type A′,

A′ v A, if x : A.

close
Γ, φ ` φ,∆

eqLeft

Γ, t1
.
= t2, [z/t1](φ), [z/t2](φ) ` ∆

Γ, t1
.
= t2, [z/t1](φ) ` ∆

if σ(t2) v σ(t1).

eqRight

Γ, t1
.
= t2 ` [z/t2](φ), [z/t1](φ), ∆

Γ, t1
.
= t2 ` [z/t1](φ), ∆

if σ(t2) v σ(t1).

Fig. 3. A Selection of classical first-order rules, taken from [13]

KeY�����
�������������������������
{����
����������

phi, psi;

}�����������
{

close {
���������������

(phi ==> phi)
������
��
��%�
����

};

impRight {
���������

(==> phi -> psi)
������ ���������!���	��

(phi ==> psi) };

cut {
�������

(phi ==>);
�������

(==> phi) };

mpLeft {
���������������

(phi ==>)
���������

(phi -> psi ==>)������ ���������!���	��
(psi ==>) };

}

KeY

Fig. 4. Examples of Taclets implementing Propositional Rules
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In order to describe rules that modify formulae of a sequent, the taclet lan-
guage offers keywords for specifying which expression a taclet works on (the focus
of the taclet application) and in which way it is modified. Taclet impRight (⇒
Fig. 4) corresponds to rule impRight in Fig. 3 and contains clauses to this end:

– \find defines a pattern (in this taclet phi → psi, where phi, psi are again
schema variables) that must occur in the sequent to which the taclet is
supposed to be applied. Accordingly, impRight can be applied whenever an
implication turns up in the succedent2 of a proof leaf.

– \replacewith tells how the focus of the application will be altered, which
for impRight means that an implication phi → psi in the succedent will
be removed, that the formula phi is added to the antecedent and that psi

is added to the succedent. In general, when a taclet with a \replacewith

clause is applied, a new proof goal is created from the previous one by re-
placing the expression matched in the \find part with the expression in the
\replacewith part (after substituting the correct concrete expressions for
schema variables).

Besides rules that modify a term or a formula, there are also rules that add
new formulae (but not terms) to a sequent. A typical example is the cut-rule,
which is a rule with two premisses that makes a case distinction on whether a
formula phi is true or false:

cut
Γ, φ ` ∆ Γ ` φ,∆

Γ ` ∆

Taclet cut (⇒ Fig. 4) shows how case distinctions like this can be realised in the
taclet language and contains a keyword that has not turned up so far:

– \add specifies formulae that are added to a sequent when the taclet is applied.
Similarly to \replacewith, the argument of \add is a sequent that gives a
list of formulae to be added to the antecedent and a second list to be added
to the succedent.

The taclet cut also shows how taclets can be written for rules that have
more than one premiss and split a proof branch into two branches. The clauses
that belong to different branches are in the taclet separated by semicolons. In
case of cut, an application will create two new proof goals and add phi to the
antecedent in one of the goals and to the succedent in the other one.

The examples above exclusively contained either \replacewith clauses or
\add clauses. It is, however, legal to use both in a taclet, and often they are
interchangeable. We could—without changing the meaning of the taclet—write
taclet impRight also in the following way:

2 In a sequent Γ ` ∆ we call the left part Γ the antecedent and the right part ∆ the
succedent.
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Taclet

impRightAdd { &�')(�*,+ (==> phi -> psi) &�-�.�/10�243�.�51(�6�7 (==> psi)

&�2�+�+ (phi ==>) };

Taclet

Similarly, \assumes and \find can be combined for specifying that a formula
can be modified provided that certain other formulae occur in the sequent. An
example is the rule known as modus ponens : if a formula phi and the implication
phi → psi hold, then also psi will hold. Because the converse is true as well—if
phi and psi hold, then also phi → psi—we can safely eliminate the implication:

mpLeft
Γ, φ, ψ ` ∆

Γ, φ, φ → ψ ` ∆

The taclet mpLeft (⇒ Fig. 4) implements this rule. If the formulae phi and
phi → psi both occur in the antecedent of a sequent, then the taclet is applicable
and phi → psi can be replaced with psi. The assumption phi will not be altered
by the taclet application.

First-Order Rules as Taclets

Dealing with a calculus for first-order logic (as opposed to propositional logic)
using the taclet approach requires handling terms and variables, in particular
schema variables for variables and for terms are necessary. As an example, we
consider the rule allLeft (⇒ Fig. 3) for universal quantifiers, which is implemented
by the taclet allLeft (⇒ Fig. 5). Apart from a variable phi for formulae, we
need the following schema variables:

– x representing logical variables of type G that can be bound by a quantifier.
– s representing an arbitrary (ground) term with static type G (or a subtype

of G).

The \find clause of allLeft specifies that the rule is applied to universally
quantified formulae of the antecedent. Upon application, the taclet adds an in-
stance of the formula to the antecedent by substituting term s for the quantified
variable x. Because s does not turn up in the \find clause of the taclet, it can
essentially be chosen arbitrarily when applying the taclet, reflecting the nature
of the allLeft rule.

The taclet allLeft demonstrates a further feature: the rule allLeft is sup-
posed to be applicable for arbitrary static types A of the quantified variable and
the substituted term. This is realised in taclets by introducing a type G that is
marked as \generic and that can stand for arbitrary “concrete” types A, in the
same way as a schema variable can represent concrete formulae or terms.

The analogue of allLeft is the taclet allRight (⇒ Fig. 5) that realises
the rule with same name in Fig. 3. In contrast to allLeft, here the original
quantified formula can be replaced with an instance in which a fresh3 constant is

3 A symbol is called fresh for a given proof if it does not occur in the proof.
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KeY

Fig. 5. Examples of Taclets implementing First-Order Rules
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substituted for the bound variable. There is a particular kind of schema variable
for introducing new constants that can be used here: variable cnst is defined
as a variable of kind \skolemTerm and will always represent a fresh constant
or function symbol that does not yet turn up in the proof in question. The
strange line \varcond(\new(cnst,\dependingOn(phi)))becomes important in
the presence of metavariables (see Sect. 2.1 and 3, where detailed explanations
are given) and ensures that all metavariables that occur in phi also are arguments
of the function symbol.

Rewriting Taclets

In all of the taclets that we have looked at so far, the parameter of \find clauses
were sequents containing exactly one formula. For implementing many first-order
rules it is, however, necessary also to modify expressions (formulae or terms) in-
side of formulae, leaving the surrounding formula or term unchanged. Examples
are most of the equality rules in Fig. 3, where we can use an equation s

.
= t for

replacing the term s with t anywhere in a sequent. The taclets that we can use
for making rules like this available are called rewriting taclets : now, the argument
of \find is a single formula or term and does not contain the arrow ==>.

A first and very simple rewriting taclet is zeroRight (⇒ Fig. 5). It states
that 0 is the right identity of addition. In zeroRight, the \find expression is a
term. As we obviously cannot replace terms with formulae, in order to make the
taclet well-formed then also \replacewith expressions have to be terms (if the
\find expression were a formula, also \replacewith expressions would have to
be).

Using zeroRight, we can for instance conduct the following proof, where the
taclet is used to turn p(a+ 0) into p(a). Subsequently, the proof can be closed
using close.

p(a) ` p(a)

p(a+ 0) ` p(a)

Both of the rules eqLeft and eqRight (⇒ Fig. 3) for applying equations are
implemented by taclet applyEq (⇒ Fig. 5), because a rewriting taclet does not
distinguish between a focus in the antecedent and in the succedent. The taclet
again uses an \assumes clause for demanding the presence of certain formulae in
a sequent, here of the appropriate equation in the antecedent, and a \find clause
for specifying the terms that can be modified. t and t2 are schema variables for
the left and the right side of the equation.

When examining the rules eqLeft and eqRight carefully, we see that both
rules also have a side-condition σ(t2) v σ(t1) that demands that the type of t2
is a subtype of the type of t1. This condition is captured in the taclet applyEq
by declaring the schema variable t as strict:

– The option strict demands that the term that is represented by t exactly
has type A, otherwise also subtypes would be allowed.
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Because t2 is non-strict, also subtypes are allowed, which means that the
condition σ(t2) v σ(t1) is met.

Implementing the rules for applying equations in a sound way—also for dy-
namic logic—requires a further feature of the taclet language:

– \sameUpdateLevel is a state condition and can only be added to rewriting
taclets. This clause ensures that the focus of the taclet application (the term
that is represented by t in \find) does not occur in the scope of modal
operators apart from updates. Updates are allowed above the focus, but in
this case the equation t

.
= t2—or, more generally, all formulae referred to

using \assumes, \replacewith and \add—have to be in the scope of the
same4 update.

This keyword is necessary for applyEq, because too liberal an application of
equations is not sound in dynamic logic. In order to illustrate the effect of
\sameUpdateLevel, we consider two potential applications of applyEq:

Illegal: Legal:

x
.
= v + 1 ` {v := 2}p(v + 1)

x
.
= v + 1 ` {v := 2}p(x)

{v := 2}(x
.
= v + 1) ` {v := 2}p(v + 1)

{v := 2}(x
.
= v + 1) ` {v := 2}p(x)

We have to rule out the left application (by adding the flag \sameUpdateLevel)
because the equation x

.
= v + 1 must not be used in the state that is created

by the update v := 2. The right application is admissible, however, because here
the equation is preceded by the same update and we know that it holds if v has
value 2.

Compared with the rules of Fig. 3, applyEq differs in a further aspect: while
the rule eqRight, for instance, only adds new formulae to a sequent, leaving
the original formulae untouched, the taclet applyEq will directly and destruc-
tively modify formulae. Taclets cannot immediately capture the copy-behaviour
of eqRight. We will show later in this section how the behaviour of eqRight can
be simulated.

Sometimes it is necessary to impose conditions on the variables that may
turn up (or not turn up) in formulae or terms involved. For this purpose, the
taclet language offers the keyword \varcond that is illustrated in the rewriting
taclet removeAll. The taclet eliminates universal quantifiers, provided that the
variable that is quantified over does not occur in the scope of the quantifier.
Because the taclet is a rewriting taclet, it can also be applied in situations in
which ordinary quantifier elimination (using rules like allRight) is not possible,
namely if a quantifier is not top-level.

4 It is enough if the updates in front of the different constituents have the same effect.
This can be determined more or less liberally, like by checking for syntactic identity
or by taking laws of updates into account.



34 Taclets by Example

Nested Taclets

Taclets have restricted higher-order features: it is possible to write taclets that
upon application introduce further taclets, i.e., make further taclets available for
proof construction.

– \addrules has as argument a list of taclets that will be made available
when the parent taclet is applied. \addrules is used similarly to \add, in
particular it is possible to introduce different taclets in each branch that a
taclet creates.

Consider the taclet applyEqAR (⇒ Fig. 5), which is an alternative taclet for
handling equations and is essentially equivalent to applyEq. If the antecedent
contains an equality that can be matched by t

.
= t2, then applying the taclet

results in a new rewriting taclet that replaces a term matched by t with a term
matched by t2. For the equation f(a)

.
= b, for instance, we would obtain the

following additional taclet (the whole truth is, however, more complicated and
explained in Sect. 4.6):

Taclet

rewrWithEq { &�')(�*,+ (f(a)) &�>�2�?).�@�/,+�2�64.�A4.�B�.,0C&�-�.�/10�2,3�.�51(�6�7 (b) };

Taclet

This means that the actual application of an equality is now performed by two
taclets. Due to the \addrules-clause, the set of available taclets is not fixed
but can grow dynamically during the course of a proof. Note that the generated
taclets are not sound in general: rewrWithEq above is only locally rendered sound
by the presence of the equation f(a)

.
= b in the antecedent (but it will stay sound

in children of the sequent). Soundness of taclets is discussed in Sect. 5. The flag
\sameUpdateLevel is set in rewrWithEq for the same reason as for applyEq, but
now entails that rewrWithEq can only be applied in the same state (below the
same updates) as the taclet applyEqAR by which it was introduced.

Using \addrules, we can also store formulae that might be needed again later
in a proof in the form of a taclet (before applying destructive modifications) or
hide formulae:

Taclet

saveLeft { &�')(�*,+ (phi ==>)

&�2�+�+�-�D10�.,> ( insert { &�2�+�+ (phi ==>) } ) };

hideLeft { &�')(�*,+ (phi ==>) &�-�.�/10�243�.�51(�6�7 (==>)

&�2�+�+�-�D10�.,> ( insert { &�2�+�+ (phi ==>) } ) };

Taclet

Rules of Dynamic Logic as Taclets

So far, we have shown examples for taclets representing calculus rules for proposi-
tional and first-order logic. However, taclets are not restricted to these two logics
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phi;�
 ���
�%������
SimpleExpression #se;

�
 ���
�%������
Statement #s0, #s1;

}�����������
{

ifElseSplit {
���������

(==>
��E
{..

���
(#se) #s0

�������
#s1 ...}

��F
phi)

"if #se true":
������ ���������!���	��

(==>
��E
{.. #s0 ...}

��F
phi)�������

(#se = TRUE ==>);

"if #se false":
������ ���������!���	��

(==>
��E
{.. #s1 ...}

��F
phi)�������
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Fig. 6. Example of a Taclet implementing a Rule of Dynamic Logic

but can also be used for formally capturing the rules of JAVA dynamic logic [1].
A taclet for handling the if-then-else statement in JAVA CARD is ifElseSplit

(⇒ Fig. 6). The basic idea of the taclet is to split the if-then-else statement into
two statements representing the possible branches. As it was done for formulae,
terms and variables, the taclet makes use of schema variables within programs,
in this case a schema variable #se for side-effect free expressions and #s0, #s1
representing program statements.

As we have seen on page 33, it is possible to apply a rewriting taclet con-
taining the keyword \sameUpdateLevel only if the application focus and the
formulae referred to using \assumes, \replacewith and \add are in the scope
of the same update. The same holds for taclets that are not rewriting taclets, i.e.,
where the \find pattern is a sequent or there is no \find clause, although it is
not necessary to include the flag \sameUpdateLevel explicitly for such taclets.
The following application of ifElseSplit is possible, in which the update v := a
occurs in front of all affected formulae:

a ≥ 0 ↔ b = TRUE, {v := a} (b = TRUE) ` {v := a} 〈 v++; 〉v > 0
a ≥ 0 ↔ b = TRUE, {v := a} (b = FALSE) ` {v := a} 〈 v = -v; 〉v > 0

a ≥ 0 ↔ b = TRUE ` {v := a} 〈 if (b) v++; else v = -v; 〉v > 0

Another feature of taclets used in ifElseSplit are the dots . ./. . . surround-
ing the program. These dots can be considered a further kind of schema variable
and stand for the context in which a statement (here the conditional statement
that is eliminated by ifElseSplit) occurs, which can be certain blocks around
the statement (like try-blocks) and arbitrary trailing code.

Finally, the taclet ifElseSplit shows how the different branches that a taclet
creates can be given names for convenience reasons. In the KeY implementation,
these strings (like "if #se true") are used as annotations in the proof tree and
can make navigation easier. As can be seen here, branch names may also contain



36 Schema Variables

schema variables (#se) that will be replaced with their concrete instantiation
when the taclet is applied.

The remaining chapter is a more systematic and less tutorial-like account
on taclets. When taking a step back, we see that the approach is based on two
notions or principles that are mostly orthogonal to each other:

– Schema variables, the special kind of variables that is used as wildcards
in expressions. Schema variables are a concept that also occurs unrelated
to taclets, for instance when writing rules in textbook notation, and are a
general means of describing rule schemas. As this chapter targets the actual
implementation of rules within theorem provers, it is, however, necessary to
develop the notion of schema variables in a more formal manner.

– A simple and high-level imperative language for modifying sequents. A pro-
gram in this language—a taclet—describes conditions when a modification
is possible, where it is possible, a list of modification statements for adding,
removing and modifying formulae, and means of branching and closing proof
goals. Speaking in terms of sequent calculi, taclets are suitable for describing
and also practically executing almost arbitrary local rules.

Most parts of the chapter relate to these two concepts: Sect. 2 is an account on
schema variables, whereas the actual taclet language is defined in Sect. 4.

2 Schema Variables

Despite the name variable, schema variables are in the context of KeY a very
broad concept: they comprise a large number of different kinds of placeholders
that can be used in taclets. All schema variables have in common that they are
wildcards for syntactic entities, which can again be different kinds of variables
(like logical variables or program variables), terms, formulae, programs or more
abstract things like modal operators.

Schema variables are used to define taclets. When a taclet is applied, i.e.,
when a goal of a proof is modified by carrying out the steps described by the
taclet, the contained schema variables will be replaced by concrete syntactic
entities. This process is called instantiation and ensures that schema variables
never occur in the proof itself. Instantiation is formally defined in Sect. 2.3. In
order to ensure that no ill-formed expressions occur while instantiating schema
variables with concrete expressions, e.g. that no formula is inserted at a place
where only terms are allowed, the kind of a schema variable defines which entities
the schema variable can represent and may be replaced with.

Example 1. In KeY syntax, we declare phi to be a schema variable representing
formulae and n a variable for terms of type integer :
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Table 1. Kinds of schema variables in the context of a type hierarchy (T , Td, Ta,v)

\variables A Logical variables of type A ∈ T

\term A Terms of type B v A (with A ∈ T )

\formula Formulae

\skolemTerm A Skolem constants/functions of type A ∈ T

\program t Program entities of type t (from Table 2)

\modalOperator M Modal operators that are elements of set M

\programContext Program context

KeY

&�>�3�7,.�?G2�H42�-)(�2�I10�.,> {

&�'�J�-�?4DG0�2 phi;

&�64.�-�? integer n;

}

KeY

The kinds of schema variables that exist in the KeY system are given in
Table 1. A more detailed explanation of each of the different categories is given
in Sect. 2.1. Table 1 has been found to be rather stable during the development
of KeY in the last years and is not expected to be modified a lot in the future.
The part that in our experience uses to be altered most frequently (e.g. for
adding support for further features of a programming language or completely
new languages) are the different types of program entities that can be described
with variables of kind \program t (see Table 2).

For the following definition of schema variables, we first introduce the notion
of a type hierarchy :

Definition 1 (Type hierarchy [13]). A type hierarchy is a tuple (T , Td, Ta,v)
of

– a finite set of static types T ,
– a finite set of dynamic types Td,
– a finite set of abstract types Ta, and
– a subtype relation v on T ,

such that

– T = Td ∪̇ Ta

– There is an empty type ⊥ ∈ Ta and a universal type > ∈ Td.
– v is a reflexive partial order on T , i.e. for all types A,B,C ∈ T ,

A v A
if A v B and B v A then A = B
if A v B and B v C then A v C
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– ⊥ v A v > for all A ∈ T .
– T is closed under greatest lower bounds w.r.t. v, i.e. for any A,B ∈ T ,

there is an5 I ∈ T such that I v A and I v B and for any C ∈ T such that
C v A and C v B, it holds that C v I. We write A u B for the greatest
lower bound of A and B and call it the intersection type of A and B. The
existence of AuB also guarantees the existence of the least upper bound AtB
of A and B, called the union type of A and B.

– Every non-empty abstract type A ∈ Ta \ {⊥} has a non-abstract subtype:
B ∈ Td with B v A.

We say that A is a subtype of B if A v B. The set of non-empty static types is
denoted by Tq := T \ {⊥}.

Definition 2. Let (T , Td, Ta,v) by a type hierarchy. A set SV of schema vari-
ables over (T , Td, Ta,v) is a set of symbols that are distinct from all other de-
clared symbols, where each schema variable sv ∈ SV has exactly one of the kinds
from Table 1 over (T , Td, Ta,v).

2.1 The Kinds of Schema Variables in Detail

We can roughly distinguish two different categories of schema variables, those
which belong to first-order logic (the upper part of Table 1) and the more special
kinds that are used to write taclets for dynamic logic.

Variables: \variables A

Schema variables for variables can be instantiated with logical variables that
have static type A. In contrast to schema variables for terms, logical variables
of subtypes of A are not allowed, as such a behaviour has been found to make
development of sound taclets difficult (⇒ Sect. 5). Schema variables can also
occur bound in formulae—which actually is the most common usage—and also
bound occurrences will be replaced with concrete variables when instantiations
are applied (this is illustrated in Example 4 below).

Terms: \term A

Schema variables for terms can be instantiated with arbitrary terms that have
the static type A or a subtype of A. Subtypes are allowed because this behaviour
is most useful in practice: there are only very few rules for which the static type
of involved terms exactly has to match some given type (in case the reader wants
to implement a rule like this, the modifier strict (⇒ Sect. 2.5) can be used). In
general, there are no conditions on the logical variables that may occur (free) in
terms substituted for such schema variables. When a term schema variable is in
the scope of a quantifier, logical variables can be “captured” when applying the
instantiation, which needs to be considered when writing taclets (again, this is
illustrated in Example 4 below).

5 It is well-known that the greatest lower bound is unique if it exists.



Taclets — A Language for Sequent Calculi 39

Formulae: \formula

Schema variables for formulae can be instantiated with arbitrary formulae. Like
for schema variables for terms, the substituted concrete formulae may contain
free variables, and during instantiation variable capture can occur.

Skolem Terms: \skolemTerm A

Schema variables for Skolem terms are supposed to be instantiated with terms
of the form

fsk(X1, . . . , Xn)

with a fresh function symbol fsk of type A and a list X1, . . . , Xn of metavariables
as arguments. Metavariables (or free variables) are a means of postponing the
instantiation of schema variables for terms, which is essential for automated
proving, and are described in Sect. 3. In most cases, namely if no metavariables
are involved, the term will degenerate to a fresh constant csk of type A.

The taclet application mechanism in KeY will simply create new function
symbols when applying a taclet that contains such schema variables. This ensures
that the inserted symbols are fresh for a proof and hence can be used as Skolem
symbols. In order to determine the arguments X1, . . . , Xn of a Skolem term,
the variable conditions \new(sk,\dependingOn(te)) (⇒ Sect. 2.6) have to be
used—adding such conditions can be necessary for ensuring that taclets are
sound. For more details see Sect. 3.

In practice, there are only few rules that use schema variables for Skolem
terms, and most probably the reader will never make use of them in his or her
own taclets.

Program Entities: \program t

There is a large number of different kinds of program entities that can be rep-
resented using program schema variables. Table 2 contains the most important
ones of the types that existed when this chapter was written, for a list that is
more complete and up-to-date we refer to the homepage6 accompanying [13]. In
KeY, the name of a program schema variable always has to start with a hash
(like #se), mostly for the purpose of parsing schematic programs.

Modal Operators: \modalOperatorM

When implementing rules for dynamic logic, very often the same rule should be
applicable for different modal operators. In most cases the versions of rules for
box and diamond operators, for instance, do not differ apart from the fact that
different modalities are used. In this situation, having to define essentially the
same rule multiple times would be very inconvenient. The problem gets worse
with the introduction of further modal operators.

6 www.key-project.org/thebook
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Table 2. A selection of the kinds of schema variables for program entities

Expressions

Expression Arbitrary JAVA expressions

SimpleExpression Side-effect free expressions: 1. a local program variable, or
2. a static attribute that is a compile-time constant, or 3. a
literal, or 4. an instanceof expression, where the first ar-
gument is a local program variable or a static compile-time-
constant attribute, or 5. a this reference

NonSimpleExpression Expression, but not SimpleExpression

Java*Expression The same as SimpleExpression, but in addition the type of
an expression has to be *, which can be Boolean, Byte, Char,
Short, Int or Long

Left-Hand Side Expressions

Variable Certain kinds of expressions that—because of syntactic
restrictions—cannot have any side-effects: 1. local program
variables, or 2. static attributes that are compile-time con-
stants

StaticVariable Static attributes without prefix or with a side-effect free pre-
fix

LeftHandSide Expressions whose only side-effect—because of syntactic
restrictions—can be the static initialisation of a class: 1. a
Variable, or 2. a StaticVariable, or 3. a non-static at-
tribute without prefix or with prefix this

Statements

Statement A single arbitrary JAVA statement

Catch A catch clause of a try block

Types

Type Arbitrary JAVA type references

NonPrimitiveType The same as Type, but not the primitive types of JAVA

Miscellaneous

Label A JAVA label

Table 3. Modal Operators that exist in KeY

diamond, box Standard operators

throughout “Throughout” modality

diamond_trc, box_trc, throughout_trc, Modalities used for handling
diamond_tra, box_tra, throughout_tra, JAVA CARD transactions
diamond_susp, box_susp, throughout_susp
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More concise definitions of rules for a variety of modal operators use schema
variables that represent groups of modal operators. An overview of the modalities
that exist in KeY is given in Table 3, and the syntax for such schema variables
is illustrated in the following example:

Example 2. We implement the most basic assignment rule for dynamic logic (for
assignments with side-effect free left- and right-hand side, see [13]):

assignment
` U{loc := val}〈π ω〉ϕ

` U〈π loc = val; ω〉ϕ

This rule is shown here for the diamond modal operator, but it can be formulated
in the same way for other modalities. In taclets, this can be realised by intro-
ducing a variable #normalMod that represents exactly the admissible operators.
The syntax for using such schema variables in taclets is

\modality{<variable>}{ <program> }\endmodality (<postcondition>)

The complete declaration of the taclet is given in Fig. 7. Note that we do not
have to include the update U explicitly, because updates in front of the formulae
that a taclet operates on are allowed by default (⇒ Sect. 4.1).
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}

KeY

Fig. 7. Assignment taclet from Example 2

Program Context: \programContext

Context schema variables cannot be declared explicitly. Instead, there is always
at most one variable of this kind that is hidden behind the π and ω in a formula:

〈π p ω〉φ
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In KeY syntax, π and ω are simply written as dots:

\<.. p ...\> phi

We will use the notation π/ω ∈ SV to talk about the context schema variable
itself. An instantiation of the context schema variable π/ω is a pair (α, β) of
two program fragments, where the “left half” α only consists of opening braces,
opening try blocks and similar “inactive” parts of JAVA, and the “right half” β
is a continuation that closes all blocks that were opened in α.

Example 3. We can use context schema variables to enclose a program statement
of interest in a context of blocks and following statements. A possible choice for
the program fragments α and β is shown here:

try {
︸ ︷︷ ︸

α

x = y; f(13); } finally { x = 0; }
︸ ︷︷ ︸

β

2.2 Schematic Expressions

For all families of expressions introduced in [13], like terms and formulae of
first-order logic or of JAVA CARD DL, programs, sequents, etc. we can introduce
corresponding schematic versions in which appropriate schema variables can be
used as surrogates for concrete sub-expressions. For obvious reasons, however,
we do not want to repeat all definitions given so far. We will only give, as an
example, a simplified definition of schematic terms and formulae. The augmen-
tation with further connectives is obvious. What is also left out in this chapter is
the definition of schematic JAVA programs, which are defined in the same spirit
as the other schematic expressions. We first need to introduce the notion of a
signature for predicate logic:

Definition 3 (Signature [13]). Given a type hierarchy (T , Td, Ta,v), a sig-
nature is a quadruple (VSym,FSym,PSym, α) of

– a set of set of variable symbols VSym,
– a set of function symbols FSym,
– a set of predicate symbols PSym, and
– a typing function α,

such that7

– α(v) ∈ Tq for all v ∈ VSym,
– α(f) ∈ T ∗

q × Tq for all f ∈ FSym, and
– α(p) ∈ T ∗

q for all p ∈ PSym.
– There is a function symbol (A) ∈ FSym with α((A)) = ((>), A) for any
A ∈ Tq, called the cast to type A.

– There is a predicate symbol
.
=∈ PSym with α(

.
=) = (>,>).

7 We use the standard notation A∗ to denote the set of (possibly empty) sequences of
elements of A.
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– There is a predicate symbol @−A ∈ PSym with α(@−A) = (>) for any A ∈ T ,
called the type predicate for type A.

We use the following notations:

– v : A for α(v) = A,
– f : A1, . . . , An → A for α(f) = ((A1, . . . , An), A), and
– p : A1, . . . , An for α(p) = (A1, . . . , An).

A constant symbol is a function symbol c with α(c) = ((), A) for some type A.

Definition 4 (Basic schematic terms and formulae). Suppose that the tu-
ple (VSym,FSym,PSym, α) is a signature for the type hierarchy (T , Td, Ta,v)
and SV a set of schema variables over (T , Td, Ta,v).

The system of sets {SchemaTermsA}A∈T of schematic terms of static type
A is inductively defined as the least system of sets such that

– sv ∈ SchemaTermsA for any schema variable sv ∈ SV of kind \variablesA,
\term A or \skolemTerm A,

– f(t1, . . . , tn) ∈ SchemaTermsA for any function symbol f : A1, . . . , An →
A ∈ FSym and terms ti ∈ SchemaTermsA′

i
with A′

i v Ai for i = 1, . . . , n,
and

– {\subst va; s}(t) ∈ SchemaTermsA for any schema variable va ∈ SV of
kind \variables B and terms s ∈ SchemaTermsB′ , t ∈ SchemaTermsA

with B′ v B.

The set SchemaFormulae of JAVA CARD DL formulae is inductively defined
as the least set such that

– phi ∈ SchemaFormulae for any schema variable phi ∈ SV of kind \formula,
– p(t1, . . . , tn) ∈ SchemaFormulae for any predicate symbol p : A1, . . . , An ∈

PSym and terms ti ∈ SchemaTermsA′

i
with A′

i v Ai for i = 1, . . . , n,
– true, false,¬φ, φ ∨ ψ, φ ∧ ψ, φ → ψ ∈ SchemaFormulae for any φ, ψ ∈

SchemaFormulae,
– ∀va. φ, ∃va. φ ∈ SchemaFormulae for any φ ∈ SchemaFormulae and any

schema variable sv ∈ SV of kind \variables.
– {\subst va; s}(φ) ∈ SchemaFormulae for any schema variable va ∈ SV of

kind \variables B, term s ∈ SchemaTermsB′ with B′ v B and formula
φ ∈ SchemaFormulae.

Note 2. According to this definition, schematic expressions never contain logi-
cal variables, the set VSym is not used. While this is not a strict necessity, it
has been found that not considering the case where logical and schema vari-
ables simultaneously turn up in expressions significantly simplifies the follow-
ing sections. Concrete (non-schema) variables are fortunately not necessary for
writing taclets, as they can always be replaced with schema variables of kind
\variables. The actual logical variables that a taclet operates on are then only
determined when the taclet is applied, i.e., when schema variables are replaced
with concrete expressions (⇒ Sect. 2.3).
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Note 3. Substitutions {\subst va; s} are here introduced as syntactic constructs
and not directly as operations on terms or formulae. This becomes necessary as
substitutions are used in taclets and have to be given a formal syntax. Further,
we also allow the case that s contains schema variables of kind \variables,
which corresponds to substituting terms that contain free variables (non-ground
substitutions). Only considering ground substitutions would be an unreason-
able restriction for taclets, but, as a downside, the application of non-ground
substitutions is more involved. Sect. 2.3 and 2.4 describe how substitutions are
eliminated when instantiating expressions.

2.3 Instantiation of Schema Variables and Expressions

Schema variables are replaced with concrete entities when a taclet is applied.
This replacement can be considered as a generalisation of the notion of substitu-
tions, and like substitutions the replacement is carried out in a purely syntactic
manner. A mapping from schema variables to concrete expressions is canonically
extended to terms and formulae.

Definition 5 (Instantiation of Schema Variables). Suppose that the quadru-
ple (VSym,FSym,PSym, α) be a signature for a type hierarchy (T , Td, Ta,v) and
SV a set of schema variables over (T , Td, Ta,v). An instantiation of SV is a par-
tial mapping

ι : SV →
(
Formulae ∪

⋃

A∈T

TermsA ∪ Programs
)

that assigns concrete syntactic entities to schema variables in accordance with
Tables 1 and 2. An instantiation is called complete for SV if it is a total mapping
on SV.

For sake of brevity, we will also talk about instantiations of (schematic) terms,
formulae or programs (⇒ Def. 4), which really are instantiations of the set of
schema variables that turn up in the expression. Given a complete instantiation
of such an expression—which in general is more complex than only a single
schema variable—we can turn the expression into a concrete one by replacing
all schema variables sv with their concrete value ι(sv). The extension of ι to
arbitrary schematic expressions makes use of a further prerequisite, (possibly
non-ground) substitutions [x/s](t), which is provided in Sect. 2.4 but follows the
same idea as the ground substitutions in [13]. Again, the corresponding definition
for instantiation of schematic programs is left out.

Definition 6 (Instantiation of Terms and Formulae). Let ι be a complete
instantiation of SV. We extend ι to arbitrary schematic terms over SV:

– ι(f(t1, . . . , tn)) := f(ι(t1), . . . , ι(tn))
– ι({\subst va; s}(t)) := [ι(va)/ι(s)](ι(t))

Likewise, ι is extended to schematic formulae over SV:



Taclets — A Language for Sequent Calculi 45

Table 4. Examples of schematic expressions and their instantiation

t ι ι(t)

f(te) {te 7→ g(a)} f(g(a))

f(va) {va 7→ x} f(x)

∀va. p(va) {va 7→ x} ∀x. p(x)

∀va. p(te) {va 7→ x, te 7→ x} ∀x. p(x)

∀va. phi {va 7→ x, phi 7→ p(x)} ∀x. p(x)

phi ∧ p(te) {phi 7→ q ∨ r, te 7→ f(a)} (q ∨ r) ∧ p(f(a))

p(sk) → ∃va. p(va) {sk 7→ c, va 7→ x} p(c) → ∃x. p(x)

{\subst va; sk}(phi) → ∃va. phi {sk 7→ c, va 7→ x, phi 7→ p(x)} p(c) → ∃x. p(x)

– ι(p(t1, . . . , tn)) := p(ι(t1), . . . , ι(tn))
– ι(true) := true and ι(false) := false,
– ι(¬φ) := ¬ι(φ),
– ι(φ ∧ ψ) := ι(φ) ∧ ι(ψ) (and correspondingly for φ ∨ ψ and φ → ψ),
– ι(∀va. φ) := ∀ι(va). ι(φ) and ι(∃va. φ) := ∃ι(va). ι(φ),
– ι({\subst va; s}(φ)) := [ι(va)/ι(s)](ι(φ)).

Example 4. Table 4 illustrates the instantiation of the different kinds of schema
variables for first-order logic. We use the following schema variables:

KeY

&�>�3�7,.�?G2�H42�-)(�2�I10�.,> {

&�B42�-)(�2�I10�.,> A va; &�6�.�-�? A te;

&�'�J�-�?4DG0�2 phi; &�>�M,J,0�.�?,N4.�-�? A sk;

}

KeY

Apart from that, we assume that f, g : A→ A are function symbols, a, c : A are
constants, p : A and q, r are predicates and x : A is a logical variable. The most
interesting instantiation takes place in the last line of Table 4, where first the
schema variables are replaced with terms and variables and then the substitution
is applied:

ι({\subst va; sk}(phi) → ∃va. phi)

= [x/c](p(x)) → ∃x. p(x)) = p(c) → ∃x. p(x)

Note 4. Example 4 demonstrates the interrelation between schema variables
\variables, \term and \formula. Instantiations of variables of the latter two
kinds, like ι(phi) = p(x), may contain free logical variables that also schema
variables va of kind \variables are instantiated with. Such occurrences can
become bound when evaluating an expression like ι(∀va. phi), effectively turn-
ing \term and \formula variables into higher-order variables: the variable phi
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represents a predicate with the formal argument va. This feature is essential for
taclets like allLeft (⇒ Fig. 5) or induction rules. A more thorough discussion
is given in Sect. 4.2.

2.4 Substitutions Revisited

Substitutions are syntactic operations on terms or formulae that replace variables
with terms and that, similarly to schema variables, are always eliminated when
a rule is applied. Substitutions never turn up in the actual proofs.

In the context of a general rule language like taclets, the restriction to ground
substitutions (as it is done in the first chapters of [13]) would often be a real
limitation. We might, for instance, formulate a taclet that eliminates existential
quantifiers if the only possible solution can directly be read off:

Taclet

uniqueEx { &�')(�*4+ ( &�.�O)(�>�6)> va; (va=t & phi))

&�B42�-P3�J�*,+ ( &�*PJ�6�Q�-�.�.)R
* (va, t))

&�-�.�/10�2,3�.�51(�6�7 ({ &�>�D�I1>�6 va; t}phi) };

Taclet

The taclet is a rewriting taclet and can also be applied in the scope of quantifiers,
for instance in

` ∀x. ∀z. x
.
= z

` ∀x. ∃y. (y
.
= x ∧ ∀z. y

.
= z)

where the expression [y/x](∀z. y
.
= z) has to be evaluated. Note that the substi-

tution applied here is not ground.
Unfortunately, application of non-ground substitutions can raise problems

that do not occur in the ground case. While both formulae given in the example
above are obviously not valid, the following slight modification of the conclusion
(to which uniqueEx is applied) shows that the taclet is not sound if the sub-
stitution is carried out naively. We rename the innermost bound variable to x,
which does not alter the meaning of the lower formula:

` ∀x. ∀x. x
.
= x

` ∀x. ∃y. (y
.
= x ∧ ∀x. y

.
= x)

Surprisingly, the result of applying uniqueEx is a valid formula (the premiss
above the bar). A rule that draws invalid conclusions from valid premisses, how-
ever, is not sound. The cause of unsoundness is the application of the substitution
in [y/x](∀x. y

.
= x), which turns a formula that is not valid into a valid one. This

phenomenon is known as variable capture or collision and occurs whenever a
term containing a (free) variable x is moved into the scope of a quantifier like
∀x. (or any operator binding x). Because the transformation changes the place
where x is bound, also the meaning of an expression will be altered drastically.

It is possible to circumvent variable capture by suitable bound renaming,
i.e., by renaming quantified variables when the danger of captured variables
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arises. The concept of bound renaming often occurs when working with bound
variables: giving variables names (or an identity) is only a means to deter-
mine the place where a variable is bound. One variable can always be ex-
changed (or renamed) with another (unused) variable. This is also known as
α-conversion. Such a renaming can as well be performed deeply within formu-
lae. The KeY implementation performs bound renaming automatically whenever
it is necessary. In order to ensure that we can always pick a variable that is
fresh for some expression or proof, in this section we assume that a signature
(VSym,FSymr ∪ FSymnr,PSymr ∪ PSymnr, α) always contains infinitely many
variables for each type.

Definition 7. A substitution is a function τ that assigns (possibly non-ground)
terms to some finite set of variable symbols dom(τ) ⊆ VSym, the domain of the
substitution, with the restriction that

If v ∈ dom(τ) and v : B, then τ(v) ∈ TermsA, for some A with A v B.

We write τ = [u1/t1, . . . , un/tn] for the substitution that has the domain
dom(τ) = {u1, . . . , un} and τ(ui) := ti.

We denote by τx the result of removing a variable from the domain of τ ,
i.e. dom(τx) := dom(τ) \ {x} and τx(v) := τ(v) for all v ∈ dom(τx).

When extending substitutions to arbitrary terms or formulae, the only in-
teresting and new case are quantifiers, where it can be necessary to perform
renaming.

Definition 8. The application of a substitution τ is extended to non-variable
terms by the following definitions:

– τ(x) := x for a variable x 6∈ dom(τ).
– τ(f(t1, . . . , tn)) := f(τ(t1), . . . , τ(tn)).

The application of a substitution τ to a formula is defined by

– τ(p(t1, . . . , tn)) := p(τ(t1), . . . , τ(tn)).
– τ(true) := true and τ(false) := false.
– τ(¬φ) := ¬(τ(φ)),
– τ(φ ∧ ψ) := τ(φ) ∧ τ(ψ), and correspondingly for φ ∨ ψ and φ→ ψ.
– If there exists y ∈ dom(τ)\{x} such that x : A occurs in τ(y), then τ(∀x. φ) :=

∀z. τ([x/z]φ) for a fresh variable z : A ∈ VSym. Otherwise, τ(∀x. φ) :=
∀x. τx(φ). (Correspondingly for ∃x. φ)

Expressions modulo Bound Renaming

An elegant approach to bound renaming—that often occurs in literature—
is to always work with the equivalence classes of formulae modulo bound
renaming. When following this notion, two formulae like ∀x. p(x) and ∀y. p(y)
are different representatives of the same equivalence class and are considered as
the same formula. While definitions usually get shorter and less technical this
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Table 5. Modifiers for Schema Variables

Modifier Applicable to

rigid \term A
\formula

Terms or formulae that can syntactically be identified as
rigid

strict \term A Terms of type A (and not of proper subtypes of A)

list \program t Sequences of program entities. The type t can be any
of the types of Table 2 apart from Label, Type and
NonPrimitiveType. Sequences of expressions can be used
to represent arguments of method invocations.

way because bound renaming does not have to be handled explicitly anymore,
the differences between the approaches are negligible for an implementation.

With these definitions, we can repeat the previously unsound application of
uniqueEx and now get a correct result (that we also would obtain when using
KeY):

` ∀x. ∀u. x
.
= u

` ∀x. ∃y. (y
.
= x ∧ ∀x. y

.
= x)

where u is an arbitrary unused variable.

2.5 Schema Variable Modifiers

Some of the schema variable kinds come in more than one flavour: it is possible
to change the set of concrete expressions that are represented by the schema
variable using certain modifiers. Such modifiers can restrict the instantiations
allowed for a variable further, or can also modify the meaning of a kind more
drastically. The KeY prover currently implements the three modifiers that are
given in Table 5.

Example 5. We define phi to represent exclusively rigid formulae (instead of
arbitrary formulae, see [13]), te to represent rigid terms that have exactly static
type A (subtypes of A are not allowed), and #slist to represent a whole sequence
of JAVA statements (separated by ;).

KeY

&�>�3�7,.�?G2�H42�-)(�2�I10�.,> {

&�'�J�-�?4DG0�2 [rigid] phi;

&�64.�-�? [rigid,strict] A te;

&�/,-�J�S�-�2�? [list] statement #slist;

}

KeY
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Table 6. Schema Variable Conditions

First-Order Conditions

\notFreeIn(va, te)

\notFreeIn(va, fo)

The logical variable that is instantiation of va must
not occur (free) in the instantiation of te/fo.

\new(sk, \dependingOn(te))

\new(sk, \dependingOn(fo))

If sk is instantiated with fsk(X1, . . . , Xn), then en-
sure that X1, . . . , Xn contains all metavariables that
occur in the instantiation of te/fo. There can be
more than one such condition for sk. Also see Sect. 3.

Introducing Fresh Local Program Variables

KeY will create a new program variable as instantiation of #x
when a taclet with such a condition is applied.

\new(#x, *) #x will have the JAVA type * (for instance int[]).

\new(#x, \typeof(#y)) #x will have the same JAVA type as the instantiation
of #y.

\new(#x, \elemTypeof(#y)) The instantiation of #y has to be of a JAVA array
type. Its component type will be the type of #x.

– va has kind \variables t
– te has kind \term s
– fo has kind \formula

– sk has kind \skolemTerm t
– #x, #y have kind \program LeftHandSide or \program Variable

2.6 Schema Variable Conditions

The simple notion of kinds of schema variables described in the previous sections
is often not expressive enough for writing useful taclets. In many cases, one has
to impose further restrictions on the instantiations of schema variables, e.g.
state that certain logical variables must not occur free in certain terms. The
taclet formalism is hence equipped with a simple language for expressing such
conditions, variable conditions. To each taclet, a list of variable conditions can
be attached (⇒ Sect. 4.1) that will be checked when the taclet is about to be
applied.

Table 6 contains the most important variable conditions in KeY. Particularly
useful is the \notFreeIn condition that is frequently needed for defining theories
using taclets.

2.7 Generic Types

Schema variables for terms, logical variables and Skolem terms are typed and
may only be instantiated with terms or variables of certain static types. While
such schema variables are in principle sufficient for implementing all rules of a
calculus for dynamic logic, this would not be particularly convenient: for certain
rules, a number of taclets would be required, one for each existing type. Example
for such rules are allLeft, allRight (⇒ Fig. 3).
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To handle this situation in a better way, the taclet formalism provides the
possibility of writing generic taclets, i.e., taclets in which the types of schema
variables involved are flexible and are assigned only when the taclet is applied.
The concept resembles schema variables, which represent concrete syntactic en-
tities and are instantiated when applying the taclet. When writing taclets, we
thus distinguish between concrete types, which are exactly the types in Def. 1,
and generic types that are mapped to concrete types when applying the taclet.
Like schema variables, generic types can only be used for defining taclets and
are not part of the actual signature of a logic.

Note 5. Generic types should not be confused with the abstract types of Def. 1,
the two notions are not related. For technical reasons, we will in fact consider
generic types as dynamic (i.e., non-abstract), but when applying a taclet a
generic type can represent both abstract and non-abstract concrete types.

For introducing generic types we extend the notion of a type hierarchy. Be-
cause generic type hierarchies can still be seen as normal type hierarchies by
simply ignoring the distinction between generic and concrete types, Def. 4 about
schematic expressions does not have to be changed but also covers terms or
formulae containing “generic parts”.

Definition 9. A generic type hierarchy is a tuple (T , Td, Ta, Tg,v,Rg) of

– a set of static types T ,
– a set of dynamic types Td,
– a set of abstract types Ta,
– a set of generic types Tg,
– a subtype relation v, and
– a range relation Rg of the generic types

such that

– Each generic type is a dynamic type, but is not universal: Tg ⊆ Td\{>}
– Rg is a relation between generic and concrete types: Rg ⊆ Tg × (T \Tg)
– (T , Td, Ta,v) is a type hierarchy (⇒ Def. 1)
– The concrete (non-generic) types also form a type hierarchy on their own:

(
T \Tg , Td\Tg, Ta, v ∩

(
(T \Tg) × (T \Tg)

))

is a type hierarchy
– The subtypes A v G of generic types G ∈ Tg are either generic or empty:
A ∈ Tg ∪ {⊥}

Example 6. Fig. 8 shows a type hierarchy with two generic types:

– GenA, which is subtype of > and can thus be used to denote arbitrary concrete
types in a taclet, and

– GenRefType, which can only represent reference types (subtypes of class
Object).
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AbstractCollection List
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Null

⊥
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GenRefType
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Object;

}

KeY

Fig. 8. An example type hierarchy
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As range relation, we choose the full relation Rg = Tg × (T \Tg). The figure also
shows how to declare the two generic types in the concrete syntax of KeY (pro-
vided that type Object exists). After the declaration, we could use the types
in taclets as illustrated in Sect. 1, for instance in order to implement the rule
allLeft.

When a taclet containing generic types (i.e., containing schema variables with
generic type) is applied, first an instantiation of these types with concrete types
is chosen: all generic types that occur in the taclet are replaced with concrete
types. It can then be checked whether instantiations of schema variables are
allowed according to Table 1. Instantiations of generic types cannot be arbitrary,
however, as the creation of ill-formed terms or formulae has to be prevented.
Referring to the types of the previous example, a taclet could, for instance,
contain the term f(te), where f : Object → Object is a function symbol and
te a schema variable of kind \term GenRefType (note that GenRefType is a
subtype of Object). It is obvious that we would run the risk of ill-formed terms
if GenRefType was allowed to be instantiated with types that themselves are not
subtypes of Object, because then also te could be replaced with terms whose
type is not a subtype of Object. This insight is generalised by demanding that
type instantiations always are monotonic wrt. the subtype relation.

Definition 10. Given a generic type hierarchy (T , Td, Ta, Tg ,v,Rg), a type in-
stantiation is a partial mapping ιt : T → T such that

– ιt is defined on concrete types A ∈ T \Tg, which are fixed-points: ιt(A) = A
– Generic types G ∈ Tg are mapped to concrete types: ιt(G) 6∈ Tg

(provided that ιt(G) is defined)
– The mapping is monotonic: if A v B then also ιt(A) v ιt(B)

(provided that ιt(A) and ιt(B) are defined)
– Generic types G ∈ Tg are mapped to types within its range: (G, ιt(G)) ∈ Rg

(provided that ιt(G) is defined)

Example 7. For the type hierarchy that is declared in Example 6, one possible
type instantiation is given by

ιt(GenA) = >, ιt(GenRefType) = AbstractList , ιt(A) = A (A 6∈ Tg)

An instantiation ιt(GenRefType) = int would not be allowed, because there is no
monotonic extension of this mapping to the set T of all types that maps Object
to itself.

Given the notion of a type instantiation, we can augment Def. 5 to also take
schema variables of generic types into account. First, we can extend type instan-
tiations ιt to the kinds of schema variables:

\term A 7→ \term ιt(A)

\variables A 7→ \variables ιt(A)

\skolemTerm A 7→ \skolemTerm ιt(A)

k 7→ k (all other kinds)
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In the presence of generic types, instantiations are then described by a pair
consisting of a schema variable instantiation and a type instantiation:

Definition 11. Let (VSym,FSym,PSym, α) be a signature for a generic type
hierarchy (T , Td, Ta, Tg ,v,Rg) and SV a set of schema variables over the same
type system. An instantiation under generic types of a set SV of schema variables
is a pair (ιt, ι), where

– ιt is a type instantiation that is defined for all types of variables in SV, and
– ι is a partial mapping (as in Def. 5)

ι : SV →
(
Formulae ∪

⋃

A∈T

TermsA ∪ Programs
)

such that, for each schema variable sv ∈ SV of kind k with ι(sv) 6= ⊥, ι(sv) is
an admissible instantiation for a schema variable of kind ιt(k).

Example 8. The purpose of range relations Rg is to provide a more direct control
over the concrete types that can be chosen for generic ones. If we, for instance,
would like to write a taclet that only can be applied for abstract types, we could
strengthen the declaration of Fig. 8:

KeY

&�>�J�-�6)> {

&�S4.�*P.�-P(�3 GenA;

&�S4.�*P.�-P(�3 GenRefType &�.�O�64.�*,+P> Object

&�J�*,.�J�' { AbstractCollection, AbstractList, List };

}

&�>�3�7,.�?G2�H42�-)(�2�I10�.,> {

&�64.�-�? [strict] GenRefType te;

}

KeY

The schema variable te would then exclusively represent terms of the types
AbstractCollection, AbstractList, List. Leaving out the keyword strict,
te could also stand for terms of the subtypes ArrayList and Null.

Generic Types vs. Schema Variables

The role of generic types is comparable to that of schema variables, and an
alternative way to define taclets that are parametric over types would indeed
be to have a concept of type schema variables. The two approaches only rep-
resent different views on the same idea. While the differences are negligible
for an implementation, we believe that including generic types in the normal
type hierarchy enables an easier theory and presentation: in this approach,
also schematic terms that occur in a taclet are well-typed.
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3 Instantiations and Metavariables—A Taster

Before a taclet can be applied, generic types and schema variables need to be
instantiated. Selecting the expression that a schema variable sv represents is
comparatively easy if the variable turns up in the \find or \assumes clause of a
taclet: in this case, the expression already has to be part of the sequent to which
the taclet is applied and can be found by matching the formulae of the sequent
with the schematic terms or formulae of \find and \assumes. This situation
also allows for a simple automated application of taclets.

There can also be schema variables that only turn up in the goal templates
of a taclet, i.e., only in \replacewith or \add clauses. The most well-known
example for such a rule is the taclet allLeft (⇒ Sect. 1), in which the schema
variable for terms only occurs in \add (a further taclet containing such schema
variables is expSplit (⇒ Fig. 2)). This means that the term that is represented
by s can be chosen arbitrarily when applying the taclet. While making this
choice can already be a difficult task for the human user of a proof assistant, the
automated application of the taclet is even more hampered, and it is necessary
to put a large amount of “intelligence”, heuristics and knowledge about the par-
ticular problem domain into an automatic search strategy for guessing the right
terms. The problem is also made difficult by the fact that the terms that need to
be inserted do in general not appear in the proof up to this point (although they
often do in practice). It can be necessary to “invent” or synthesise completely
new terms.

A general approach to overcome the problem, which has been developed in
the area of automated theorem proving, are “free variables” or “metavariables”.
Metavariables are place-holders that can be introduced instead of actual ex-
pressions when applying rules. For an extensive account on metavariables in
first-order logic see, for instance, [12]. While metavariables can in principle be
introduced for all kinds of expressions, most commonly (and also in KeY) they
are only used as place-holders for terms: whenever a taclet is applied that con-
tains schema variables for terms that only occur in goal templates, instead of
immediately choosing the instantiation of the schema variables, metavariables
can be introduced.

At some point after introducing a metavariable, it often becomes obvious
which term the metavariable should stand for, or it becomes necessary to choose
a certain term in order to apply a rule. This is achieved by applying a sub-
stitution (⇒ Sect. 2.4) to the whole proof tree that replaces the metavariable
with the chosen term. Because such a replacement is a destructive operation
(substituting the wrong term can make it necessary to start over with parts of
the proof), KeY follows the non-destructive approach that is described in [12, 4]
and actually never applies substitutions. Instead of substitutions, constraints are
stored that describe substitution candidates. Constraints are generated when-
ever the application of substitutions becomes necessary in order to apply rules
and are attached to formulae and to proof goals. The actual application of the
substitution can then be postponed until it is certain that the substitution is
not harmful.
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Not all terms can be substituted for metavariables. Because metavariables are
considered as rigid symbols, in particular, it is not allowed to substitute non-
rigid terms (like program variables) for metavariables. In practice, this seriously
limits the usefulness of metavariables when doing proofs in dynamic logic and is
an issue that belongs to the “Future Work” section.

Further examples for the usage of metavariables and constraints are given in
[13].

Skolem Symbols and the “Occurs Check”

The concept of metavariables collides, to a certain degree, with rules that are
supposed to introduce fresh symbols (like allRight in Sect. 1). The problematic
situation is as follows: by applying substitutions to a proof tree, the sequents
that rules are operating on can be modified after actually applying the rules.
This means that we can no longer be sure that a symbol that does not turn up
in sequents actually is fresh, because it could also be inserted at a later point
through a substitution. In order to illustrate this phenomenon, we try to prove
the (non-valid) formula ∃x. ∀y. x

.
= y using a metavariable X :

` ∃x. ∀y. x
.
= y,X

.
= csk

` ∃x. ∀y. .x
.
= y, ∀y.X

.
= y

allRight

` ∃x. ∀y. x
.
= y

exRight

At this point, it becomes obvious that we would like to substitute csk for X :

` ∃x. ∀y. x
.
= y, csk

.
= csk

` ∃x. ∀y. x
.
= y, ∀y. csk

.
= y

allRight

` ∃x. ∀y. x
.
= y

exRight

The proof can now be closed by applying eqClose to the formula csk
.
= csk. Search-

ing for the mistake, we see that the application of allRight becomes illegal after
applying the substitution, because the constant csk that is introduced is no longer
fresh.

There is a simple and standard solution to this inconsistency: when intro-
ducing symbols that are supposed to be fresh, critical metavariables have to be
listed as arguments of the fresh symbols. A correct version of our proof attempt
is:

` ∃x. ∀y. x
.
= y,X

.
= csk(X)

` ∃x. ∀y. x
.
= y, ∀y.X

.
= y

allRight

` ∃x. ∀y. x
.
= y

exRight

It is easy to see that no substitution can make the terms X and csk(X) syntacti-
cally equal, so that it is impossible to close the proof: the terms are not unifiable,
because X occurs in the term that it is supposed to represent. This situation is
known as a failing occurs check.

When writing taclets that introduce fresh symbols (using schema variables
of kind \skolemTerm), it is currently necessary to specify the metavariables
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that have to turn up as arguments of the symbol by hand and using the vari-
able condition \new(...,\dependingOn(...)) (⇒ Sect. 2.6). An example is the
taclet allRight (⇒ Sect. 1). It is likely, however, that these dependencies will
be computed automatically by KeY in the future.

4 Systematic Introduction of Taclets

This section introduces the syntax and semantics of the taclet language. The
first pages are written in the style of a reference manual for the different taclet
constructs and provide most of the information that is necessary for writing one’s
own taclets. Later, the meaning of taclets is defined in a more rigorous setting.

4.1 The Taclet Language

〈taclet〉 ::=
〈identifier 〉 {

〈contextAssumptions〉? 〈findPattern〉?
〈stateCondition〉? 〈variableConditions 〉?
( 〈goalTemplateList 〉 | &�3�0�J4>�.�S4J�240 )
〈ruleSetMemberships〉?

}

Taclets describe elementary goal expansion steps. In short, a taclet contains
information about 1. when and to which parts of a sequent the taclet can be
applied, and 2. in which way the proof is expanded or a proof goal is closed. This
information is given by the different parts that make up the body of a taclet.
Fig. 9 shows the syntax of the taclet parts, which are explained in more detail
on the following pages.

Context Assumptions: What has to be present in a sequent

〈contextAssumptions〉 ::= &�2,>�>�D�?G.,> ( 〈schematicSequent〉 )

Context assumptions are—together with the \find part of a taclet—the means
of expressing that a goal modification can only be performed if certain formulae
are present in the goal. If a taclet contains an \assumes clause, then the taclet
may only be applied if the given sequent is part of the goal that is supposed to
be modified. Formulae specified as assumptions will not be consumed8 by the
application of the taclet, they will instead be kept and also be present in the
modified goals.

Examples in Sect. 1: close, mpLeft (⇒ Fig. 4), applyEq (⇒ Fig. 5)

8 It is possible, however, that a taclet is applied on one of its assumptions, i.e., that
an assumption is also matched by the \find pattern of a taclet. In this situation a
taclet application can modify or remove an assumption.



Taclets — A Language for Sequent Calculi 57

KeY syntax

〈taclet〉 ::=
〈identifier 〉 {

〈contextAssumptions 〉? 〈findPattern 〉?
〈stateCondition〉? 〈variableConditions〉?
( 〈goalTemplateList 〉 |

������
�����%�
����
)

〈ruleSetMemberships 〉?
}

〈contextAssumptions 〉 ::=
���������������

( 〈schematicSequent 〉 )

〈findPattern〉 ::=
���������

( 〈schematicExpression 〉 )

〈schematicExpression 〉 ::=
〈schematicSequent 〉 | 〈schematicFormula〉 | 〈schematicTerm〉

〈stateCondition〉 ::=
���:��X���Y�������	�X�	���	��

|
����������"� �����	���#���$����

〈variableConditions〉 ::=
��$�������
����

( 〈variableConditionList〉 )

〈variableConditionList〉 ::= 〈variableCondition〉 ( , 〈variableCondition〉 )∗

〈goalTemplateList 〉 ::= 〈goalTemplate〉 ( ; 〈goalTemplate〉 )∗
〈goalTemplate〉 ::=

〈branchName〉?
(
������ ���������!��:	��

( 〈schematicExpression 〉 ) )?
(
�������

( 〈schematicSequent 〉 ) )?
(
�����������������

( 〈taclet〉 ( , 〈taclet〉 )∗ ) )?
〈branchName〉 ::= 〈string〉 :

〈ruleSetMemberships 〉 ::=
��������������	��
���

( 〈identifierList〉 )

〈identifierList〉 ::= 〈identifier 〉 ( , 〈identifier〉 )∗

KeY syntax

Fig. 9. The Taclet Syntax



58 Systematic Introduction of Taclets

Find Pattern: To which expressions a taclet can be applied

〈findPattern〉 ::= &�')(�*4+ ( 〈schematicExpression〉 )

〈schematicExpression〉 ::=
〈schematicSequent〉 | 〈schematicFormula〉 | 〈schematicTerm〉

More specifically than just to a goal of a proof, taclets are usually applied to
an occurrence of either a formula or a term within this goal. This occurrence is
called the focus of the taclet application and is the only place in the goal where
the taclet can modify an already existing formula (apart from which, only new
formulae can be added to the goal). There are three different kinds of patterns
a taclet can match on:

– A schematic sequent that contains exactly one formula: this either specifies
that the taclet can be applied if the given formula is an element of the
antecedent, or if it is an element of the succedent, with the formula being
the focus of the application. It is allowed, however, that the occurrence of
the formula is preceded by updates (see the section on “State Conditions”).

– A formula: the focus of the application can be an arbitrary occurrence of the
given formula (also as subformula) within a goal.

– A term: the focus of the application can be any occurrence of the given term
within a goal.

Taclets with the last two kinds of \find patterns are commonly referred to as
rewriting taclets.

Examples in Sect. 1: Virtually all taclets given there

State Conditions: Where a taclet can be applied

〈stateCondition〉 ::= &4(�*PZ�.�[�D,.�*464Z�6�2�64. | &�>�2�?G.�@�/,+�2�64.�A4.�B4.,0
In a modal logic like dynamic logic, a finer control over where the focus of a
taclet application may be located is needed than is provided by the different
kinds of \find patterns. For rewriting rules it is, for instance, often necessary
to forbid taclet applications within the scope of modal operators (like program
blocks) in order to ensure soundness. There are three different “modes” that a
taclet can have:

– \inSequentState: the most restrictive mode, in which the focus of a taclet
application must not be located within the scope of any modal operator (like
programs or updates).

– \sameUpdateLevel: this mode is only allowed for rewriting taclets (i.e., there
is a \find clause, and the pattern is not a sequent) and allows the applica-
tion focus of a taclet to lie within the scope of updates, but not in the scope
of other modal operators. The same updates have to occur in front of the ap-
plication focus and the formulae referred to using \assumes, \replacewith
and \add.

Examples in Sect. 1: applyEq, applyEqAR (⇒ Fig. 5)
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Table 7. Matrix of the different taclet modes and the different \find patterns. For each
combination, it is shown 1. where the focus of the taclet application can be located,
and 2. which updates consequently have to occur above the formulae that are matched
or added by \assumes, \add or \replacewith.

\find pattern is
sequent

\find pattern is
term or formula

No \find

Operators that are allowed above focus

\inSequentState None All non-modal
operators

Forbidden

combination

\sameUpdateLevel Forbidden

combination

All non-modal
operators, updates

Forbidden

combination

Default Updates All operators —

Which updates have to occur above \assumes and \add formulae

\inSequentState None None Forbidden

combination

\sameUpdateLevel Forbidden

combination

Same updates as
above focus

Forbidden

combination

Default Same updates as
above focus

None None

Which updates have to occur above \replacewith formulae

\inSequentState None None Forbidden

combination

\sameUpdateLevel Forbidden

combination

Same updates as
above focus

Forbidden

combination

Default Same updates as
above focus

Same updates as
above focus

None
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– Default: the most liberal mode. For rewriting taclets, this means that the
focus can occur arbitrarily deeply nested and in the scope of any modal
operator. If the \find pattern of the taclet is a sequent, then the application
focus may occur below updates, but not in the scope of any other operator.

State conditions also affect the formulae that are required or added by
\assumes, \add or \replacewith clauses. Such formulae have to be preceded
by the same updates as the focus of the taclet application (which also explains
the keyword \sameUpdateLevel). The only exception are rewriting taclets in
“default” mode, where formulae that are described by \assumes or \add must
not be in the scope of updates, whereas there are no restrictions on the location
of the focus. The relation between the positions of the different formulae is also
shown in Table 7.

Variable Conditions: How schema variables may be instantiated

〈variableConditions 〉 ::= &�B42�-P3�J�*,+ ( 〈variableConditionList 〉 )

〈variableConditionList 〉 ::= 〈variableCondition 〉 ( , 〈variableCondition 〉 )∗

Schema variable conditions have already been introduced in Sect. 2.6, together
with the concrete syntax for such conditions that is used in KeY. A list of such
conditions can be attached to each taclet to control how schema variables are
allowed to be instantiated.

Examples in Sect. 1: removeAll (⇒ Fig. 5)

Goal Templates: The effect of the taclet application

〈goalTemplateList 〉 ::= 〈goalTemplate〉 ( ; 〈goalTemplate〉 )∗
〈goalTemplate〉 ::=

〈branchName〉?
( &�-�.�/10�2,3�.�51(�6�7 ( 〈schematicExpression〉 ) )?
( &�2�+�+ ( 〈schematicSequent〉 ) )?
( &�2�+�+�-�D10�.4> ( 〈taclet〉 ( , 〈taclet〉 )∗ ) )?

〈branchName〉 ::= 〈string〉 :

If the application of a taclet on a certain goal and a certain focus is permitted
and is carried out, the goal templates of the taclet describe in which way the
goal is altered. Generally, the taclet application will first create a number of new
proof goals (split the existing proof goal into a number of new goals) and then
modify each of the goals according to one of the goal templates. A taclet without
goal templates will close a proof goal. As shown above as well as in Sect. 1, in
this case the keyword \closegoal is written instead of a list of goal templates
in order to clarify this behaviour syntactically.

Goal templates are made up of three kinds of operations:

– \replacewith: if a taclet contains a \find clause, then the focus of the taclet
application can be replaced with new formulae or terms. \replacewith has
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to be used in accordance with the kind of the \find pattern: if the pattern is
a sequent, then also the argument of the keyword \replacewith has to be a
sequent, etc. In contrast to \find patterns, there is no restriction concerning
the number of formulae that may turn up in a sequent being argument of
\replacewith. It is possible to remove a formula from a sequent by replacing
it with an empty sequent, or to replace it with multiple new formulae.

– \add: independently of the kind of the \find pattern, the taclet application
can add new formulae to a goal.

– \addrules: a taclet can also create new taclets when being applied. We will
ignore this feature for the time being and come back to it in Sect. 4.6.

Examples in Sect. 1: applyEqAR (⇒ Fig. 5), saveLeft, hideLeft

Apart from that, each of the new goals (or branches) can be given a name in
order to improve readability of proof trees.

Rule Sets: How taclets are applied automatically

〈ruleSetMemberships〉 ::= &�7P.�D4-)(�>�6G(�3�> ( 〈identifierList〉 )

〈identifierList〉 ::= 〈identifier 〉 ( , 〈identifier 〉 )∗

Each taclet can be declared to be element of a number of rule sets, which in
turn are used by the strategies in KeY that are responsible for applying rules
automatically. Rule sets are intended as an abstraction from the actual taclets
and identify taclets that should be treated in the same way. Existing rule sets in
KeY are, amongst many others, alpha9 (for non-splitting elimination of propo-
sitional connectives), beta (splitting elimination of connectives) and simplify

(simplification of expressions).

4.2 Well-Formedness Conditions on Taclets

Not all taclets that can be written using the syntax of Sect. 4.1 are meaningful
or desirable descriptions of rules. We want to avoid, in particular, rules whose
application could destroy well-formedness of formulae or sequents. In this section,
we thus give a number of additional constraints on taclets that go beyond the
pure taclet syntax. As a note up-front, all of the following issues could also be
solved in different ways, possibly leading to a more flexible taclet language, but
experience shows that the requirement to write taclets in a more explicit way
reduces the risk of introducing bugs and unsound taclets.

In the KeY implementation, non-well-formed taclets are immediately rejected
and cannot even be loaded.

9 The names alpha and beta are common terminology in tableaux-style theorem
provers.
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Sequents do not Contain Free Variables

Following [13], we do not allow sequents of our proofs to contain free logical
variables (in contrast to metavariables (⇒ Sect. 3), which are never bound).
Unfortunately, this is a property that can easily be destroyed by incorrect taclets:

Taclet

illegalTac1 { &�')(�*,+ (==> &�'�J�-�2,0�0 va; p(va))

&�-�.�/G0�2,3�.�5G(�6�7 (==> p(va)) };

illegalTac2 { &�')(�*,+ (==> &�'�J�-�2,0�0 va; phi)

&�-�.�/G0�2,3�.�5G(�6�7 (==> phi) };

Taclet

In both examples, the taclets will remove quantifiers and possibly inject free
variables into a sequent: 1. schema variables of kind \variables could occur
free in clauses \add or \replacewith, or 2. a logical variable ι(va) could occur
free in the concrete formula ι(phi) that a schema variable phi represents, and
after removing the quantifier the variable would be free in the sequent (the same
can happen with schema variables for terms). We will rule out both taclets by
imposing suitable constraints.

In order to handle taclets like illegalTac1, we simply forbid taclets con-
taining \replacewith or \add clauses with unbound schema variables va:

Definition 12. An occurrence of a schema variable va of kind \variables in
a schematic expression is called bound if it is in the scope of a quantifier ∀va. ,
∃va. or a substitution {\subst sv; t}, and if it is not itself part of a binder (like
∀va. ).

Requirement 1 (Variables are bound). All occurrences of a schema variable
of kind \variables in \find, \assumes, \replacewith or \add clauses are
either part of a binder or are bound.

Note 6. It would be safe to allow schema variables of kind \variables to occur
free in \find or \assumes. This would only lead to useless taclets that are never
applicable (provided that sequents are not already ill-formed and contain free
logical variables).

It is less obvious how taclet illegalTac2 should be taken care of. According
to Sect. 2, the schema variable phi can stand for arbitrary formulae containing
arbitrary free variables, but as the example shows this is too liberal. Whenever a
variable x occurs free in a formula ι(phi), the formula also has to be in the scope
of a binder of x. The binder could either occur explicitly in the taclet—like a
quantifier ∀va.—or for a rewriting taclet it could be part of the context in which
the taclet is applied. An example for the latter possibility is shown in Sect. 2.4.

We will here go for a rigorous solution of the problem and require the author
of illegalTac2 to state his or her intention more clearly. The first half of the
solution is given in the following definition, where we require that the variables
that are explicitly bound in the taclet above occurrences of phi are consistent.
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The second part is Def. 14, describing which logical variables we allow to occur
free in a formula ι(phi).

Requirement 2 (Unique Context Variables). Suppose that t is a taclet,
that sv is a schema variable of kind \term or \formula, and that va is a
schema variable of kind \variables. If an occurrence of sv in \find, \assumes,
\replacewith or \add clauses of t is in the scope of a binder of va (which could
be ∀va. , ∃va. or {\subst sv; u}), then

– all occurrences of sv in t are in the scope of a binder of va, or

– t has a variable condition \notFreeIn(va, sv).

The variable va is called a context variable of sv in t. More formally, the set
of context variables of sv in t is defined as

Πt(sv) = {va | va is of kind \variables, sv is in the scope of va}
\ {va | t has variable condition \notFreeIn(va, sv)}

Correct versions of the taclet shown above are thus:

Taclet

legalTac2a { &�')(�*,+ (==> &�'�J�-�2,0�0 va; phi)

&�-�.�/10�2,3�.�51(�6�7 (==> { &�>�D�I1>�6 va; t} phi) };

legalTac2b { &�')(�*,+ (==> &�'�J�-�2,0�0 va; phi)

&�B42�-P3�J�*,+ ( &�*PJ�6�Q�-�.�.PR�* (va, phi))

&�-�.�/10�2,3�.�51(�6�7 (==> phi) };

Taclet

The context of phi in these two taclets, i.e., the sets of variables that are
bound for all occurrences of phi in the taclets, is ΠlegalTac2a(phi) = {va} and
ΠlegalTac2b(phi) = ∅.

Note 7. The KeY implementation contains a further well-formedness condition:
schema variables of kind \variables are allowed to be bound at most once in the
\find and \assumes clauses of a taclet (together). This is not a severe restriction,
because it is always possible to apply bound renaming for ensuring that variables
are only bound in one place, without changing the intended meaning of a taclet.
For the representation of taclets in this chapter, however, it is not necessary to
enforce unique binding of variables.

4.3 Implicit Bound Renaming and Avoidance of Collisions

As already seen in Sect. 2.4 about substitutions, the actual identity of bound
variables is not important for the meaning of a formula. If a variable z 6∈ fv(φ)
does not occur free in φ, then formulae ∀x. φ and ∀z. [x/z](φ) will be equivalent.
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Although it is not strictly necessary for achieving completeness,10 from a practi-
cal point of view it is desirable that the applicability of taclets does not depend
on which variables are bound in formulae. We would like to treat sequents like

∀x. p(x) ` ∀x. p(x)

∀x. p(x) ` ∀y. p(y)

in the same way, in particular a taclet like close (⇒ Sect. 1) should be applicable
to one of the sequents if and only if it is applicable to the other sequent. For the
second sequent, this would mean that the schema variable phi represents two
different formulae, which will obviously not work without further measures.

The most common (theoretic) standpoint is to allow implicit renaming steps
whenever they are necessary for applying rules. We follow this approach in the
scope of this chapter, and in the definitions on the following pages we will only
formulate conditions on (bound) variables that possibly have to be established by
implicit renaming. In this setting, an application of close to the second sequent
would be

∀y. p(y) ` ∀y. p(y)
close

∀x. p(x) ` ∀y. p(y)
(rename)

where the first step (rename) is performed implicitly for preparing the sequent
for the actual taclet application. Likewise, in both formulae the variables x (or
any other variable) could have been introduced. Renaming steps are often not
shown at all in proofs.

Note 8. KeY applies bound renaming, whenever it becomes necessary, as part of
its taclet application mechanism. As renaming steps are not shown in the proof
tree, the user will in most cases not even notice that a renaming has occurred.

Collisions

We have already met the problem of collisions in Sect. 2.4. A similar phenomenon
occurs when applying and evaluating taclets, also here it is possible that the place
where a variable is bound changes unintentionally. The reason is that distinct
schema variables of kind \variables can happen to be instantiated with the
same logical variable. If an “artificial”, but in principle reasonable, taclet for
eliminating universal quantifiers in the antecedent

Taclet

allExLeft {

&�'P(�*,+ ( &�'�J�-�2,0�0 x; &�.�OG(�>�6)> y; phi ==>)

&�B�2�-P3�J�*4+ ( &�*PJ�6�Q�-�.�.PR�* (y, t))

&�2�+�+ ( &�.�O)(�>�6)> y; { &�>�D�IG>�6 x; t} phi ==>) };

Taclet

10 The calculus for first-order logic in [13] is complete also without rules for bound
renaming or comparing formulae modulo bound renaming. This shows that it is, in
principle, sufficient to provide rules for eliminating quantifiers.
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was applied naively, we would have to consider the taclet as unsound. The taclet
commutes binders, so that the location where variables are bound can change:

∀x. ∃x. x
.
= 0, ∃x. 1

.
= 0 `

∀x. ∃x. x
.
= 0, ∃x. [x/1](x

.
= 0) `

∀x. ∃x. x
.
= 0 `

Here, the lower sequent is not valid, but the upper one is, which means that
the application of the taclet has to be considered unsound. In order to make
the development of sound taclets easier (feasible), we will forbid such taclet
applications:

Definition 13. Suppose that t is a taclet and that ι is an instantiation of the
variables of t. Then ι has distinct bound variables concerning t if all logical
variables ι(va) represented by schema variables va of kind \variables in t are
distinct.

As illustrated in the first part of this section, we assume that the conditions
of the previous definition are implicitly established by suitable variable renaming
when applying a taclet. In rather special cases, it can also be necessary to dupli-
cate formulae in order to establish distinctness. As an example, we can imagine
a taclet that works with terms representing surjective functions:

Taclet

surjectivity {

&�24>�>�D�?G.4> ( &�'�J�-�2,0�0 x; &�.�OG(�>�6P> y; x = t ==>)

&�'P(�*,+ ( &�.�OG(�>�6)> z; phi) &�>�2�?G.�@�/,+�2�64.�A4.�B4.,0
&�B�2�-P3�J�*4+ ( &�*PJ�6�Q�-�.�.PR�* (x, t), &�*PJ�6�Q�-�.�.)R
* (y, phi))

&�-�.�/10�2,3�.�51(�6�7 ( &�.�OG(�>�6)> y; { &�>�D�I1>�6 z; t} phi)

};

Taclet

Provided that a term t—in which a variable y can occur free—describes a sur-
jective mapping, we can use it to rewrite quantified formulae:

∀a. ∃b. a
.
= b+ 1 ` ∃b. b+ 1 − 1

.
= 3

∀a. ∃b. a
.
= b+ 1 ` ∃c. c− 1

.
= 3

surjectivity

In a more pathological application, however, the taclet can be used to modify
the quantified formula of the antecedent itself:

∀a. ∃b. a
.
= b+ 1 + 1 `

∀a. ∃b. a
.
= b+ 1 `

surjectivity

Strictly speaking, this transformation is only possible if the formula is first dupli-
cated and the variable b is renamed to a new variable b′. The variable condition
\notFreeIn(y, phi) would otherwise be violated: phi becomes instantiated
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with a
.
= b+ 1 and y with the variable b, which contradicts the variable condi-

tion. Hence, a detailed proof tree showing the taclet application looks as follows:

∀a. ∃b. a
.
= b+ 1 + 1 `

∀a. ∃b. a
.
= b+ 1, ∀a. ∃b. a

.
= b+ 1 + 1 `

(weak.)

∀a. ∃b. a
.
= b+ 1, ∀a. ∃b′. a

.
= b′ + 1 `

surj.

∀a. ∃b. a
.
= b+ 1 `

(rename)

In the KeY implementation, the steps (rename) and (weaken) would be carried
out automatically and not be shown in the proof tree. The example illustrates
that it can—in seldom cases—be necessary to duplicate formulae and apply
renaming before the application of a taclet is possible.

Note 9. The condition of Def. 13 is sufficient for preventing collisions, but is
usually more defensive than necessary. In the KeY implementation, more precise
(and complicated) conditions are used that often avoid variable renaming or
duplicating formulae.

4.4 Applicability of Taclets

This section describes when the application of a taclet is possible. An informal
account of this was already given in Sect. 4.1, where the different clauses of a
taclet are introduced, and is now accompanied with a more rigorous treatment.
In order to apply a taclet on a proof goal, several parameters have to be provided:

– If the taclet contains schema variables of generic types (⇒ Sect. 2.7), then
these types first have to be mapped to concrete types.

– If the taclet contains schema variables, then one has to give an instantia-
tion (⇒ Sect. 2.3) that describes how to replace the variables with concrete
expressions.

– If the taclet contains a \find clause (⇒ Sect. 4.1), then it is necessary to
select a focus of the taclet application within the goal in question.

Not all values that can be chosen for these unknowns are meaningful and should
be admitted. It is obvious that taclet application should not be allowed if, e.g.,
variable conditions are violated, but there are a number of further and more
subtle requirements.

Free Variables in Instantiations of Schema Variables

The examples in the previous sections show that instantiations of schema vari-
ables for terms or formulae should be allowed to contain certain logical variables
free. At the same time, it has to be ensured that no free variables are introduced
in sequents. In taclet legalTac2a (⇒ Sect. 4.2), for instance, it should be pos-
sible to instantiate variable va with x and phi with p(x) (where x occurs free),
so that the taclet matches on a formula ∀x. p(x). The tool for deciding about
the free variables that are permitted will be the context variables of a schema
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variable (Prop 2), which are exactly those variables that are guaranteed to be
bound (in the taclet) for each occurrence of a schema variable.

For certain rewriting taclets, it is desirable to allow further free variables
that are not context variables of a schema variable. An example is the taclet
zeroRight (⇒ Sect. 1), which we also would like to apply to a formula like
∀x. p(x+ 0). The variable intTerm does not have any context variables, however,
as there are no variables bound at all in the taclet. Situations like this are taken
into account as well by the next definition.

Definition 14. Suppose that t is a taclet, that ι is an instantiation of the
variables of t and that focus11 is a potential application focus of t (we choose
focus = ⊥ if t does not have a \find clause). We say that ι respects variable
contexts concerning focus if, for every schema variable sv of t of kind \term or
\formula and all free variables x ∈ fv(ι(sv)),

– there is a schema variable va ∈ Πt(sv) with ι(va) = x, or
– t contains at most one \replacewith clause, sv turns up only in \find,

\replacewith or \varcond clauses of t, and x is bound above focus.

The second item makes it possible to apply taclet zeroRight to a for-
mula ∀x. p(x+ 0). According to Table 7, it only applies to rewriting taclets,
because for other taclets there will never be any variables bound above focus .

Note 10. The requirement of the second item—that there is not more than one
\replacewith clause—is added because quantifiers or other binders do in general
not distribute through conjunctions. It would hardly be possible to formulate
sound rewriting taclets with more than one \replacewith clause if free variables
were allowed to turn up. An example is the (artificial, but not unreasonable)
taclet performing a case distinction on a term of type boolean

Taclet

splitBool { &�'P(�*,+ (b) &�-�.�/10�2,3�.�51(�6�7 (TRUE);

&�-�.�/10�2,3�.�51(�6�7 (FALSE) };

Taclet

which could be used in the following unsound way:

` ∃x : boolean .TRUE 6
.
= x ` ∃x : boolean .FALSE 6

.
= x

` ∃x : boolean . x 6
.
= x

Permitted Taclet Applications

We will now give a complete definition of when we consider a taclet, given a
sequent and all necessary parameters, as applicable:

11 We write focus for an occurrence of the formula or term focus , i.e., focus describes
not only an expression but also a location within a sequent.
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Definition 15 (Matching Instantiation). Suppose that t is a taclet over a
generic type hierarchy (T , Td, Ta, Tg ,v,Rg) and a set SV of schema variables. A
matching instantiation of t is a tuple (ιt, ι,U , Γ ` ∆, focus) consisting of

– a type instantiation ιt,
– a complete instantiation ι of the schema variables of t (apart from those

variables that only occur within \addrules clauses),
– an update U describing the context of the taclet application (U can be empty),
– a sequent Γ ` ∆ to which the taclet is supposed to be applied, and
– an application focus focus within Γ ` ∆ that is supposed to be modified (we

write focus = ⊥ if t does not have a \find clause)

that satisfies the following conditions:

1. the pair (ιt, ι) is an admissible instantiation of SV under generic types (⇒
Def. 11),

2. ι satisfies all variable conditions of taclet t (referring to Table 6),
3. ι respects the variable context of t concerning focus (⇒ Def. 14),
4. ι has distinct bound variables concerning t (⇒ Def. 13),
5. if t has a \find clause, then the position of focus is consistent with the state

conditions of t (Table 7),
6. U is derived from focus according to the middle part “Which updates have

to occur above \assumes and \add formulae” of Table 7 (for focus = ⊥ and
the fields “forbidden combination” we choose the empty update skip),

7. for each formula φ of an \assumes clause of t, Γ ` ∆ contains a correspond-
ing formula Uι(φ) (on the correct side),

8. if t has a clause \find(f), where f is a formula or a term, then ι(f) = focus
(the \find pattern has to match the focus of the application),

9. if t has a clause \find(f), where f is a sequent containing a single for-
mula φ, then ι(φ) = focus and the formulae φ and focus occur on the same
sequent side (both antecedent or both succedent).

Example 9. We show how this definition applies to taclet instAll (⇒ Fig. 10),
which is a variant of allLeft and allows to select the term that is supposed to
be substituted as focus. We can apply the taclet to the sequent

Γ ` ∆ = ∀o. f (o)
.
= o.a, f (self )

.
= 1 ` {i := 2}(self .a

.
= 1)

where the application focus is underlined, the constant self and the logical vari-
able o have type A and f : A → integer is a function. The remaining compo-
nents of the matching instantiation are:

– the type instantiation ιt = {G 7→ A},
– the instantiation ι = {phi 7→ f (o)

.
= o.a, x 7→ o, s 7→ self },

– the (effect-less) update U = skip.

That the instantiation is indeed matching can be observed as follows:



Taclets — A Language for Sequent Calculi 69

KeY����
���	��
{��%������������

G;

}�����
�������������������������
{����
����������

phi;
�
$����������������

G x;
��	����
�

G s;

}�����������
{

instAll {
���������������

(
����
��������

x; phi ==>)
���������

(s)�������
({
����������	

x; s}phi ==>) };

}

KeY

Fig. 10. The Taclet described in Example 9.

1. We have ιt(\variables G) = \variables A, ιt(\term G) = \term A. Be-
cause of the types of self and o, the pair (ιt, ι) is an admissible instantiation.

2. There are no variable conditions.
3. The variable contexts of instAll are the setsΠinstAll(phi) = {x} andΠinstAll(s) = ∅,

they are respected by ι as fv(ι(phi)) = {o} = {ι(x)} and ι(s) does not con-
tain variables.

4. There is only one schema variable of kind \variables. Hence, ι has distinct
bound variables.

5. instAll has no explicit state conditions, and thus all operators are allowed
above the focus self .

6. According to Table 7, U has to be the empty update skip. Note that this is
the case even though the application focus is in the scope of an update.

7. The \assumes clause contains only one formula, which is correctly mapped
to one of the formulae of Γ : ι(∀x. phi) = ∀o. f (o)

.
= o.a

8. The \find expression is correctly mapped to the term of the application
focus: ι(s) = self

9. (Does not apply)

4.5 The Effect of a Taclet

Applying a taclet to a goal and a focus will carry out the modification steps
that are described by the goal templates of the taclet. Each goal template can
alter the focus the taclet is applied to (\replacewith), add further formulae to
a goal (\add) and make further taclets available (\addrules). In this section,
we concentrate on the first two kinds of effects and postpone a discussion of the
latter kind until Sect. 4.6.

Definition 16 (Applying a Goal Template). Suppose that a matching in-
stantiation (ιt, ι,U , Γ ` ∆, focus) of a taclet t is given. One goal template is
applied on Γ ` ∆ by performing the following steps (in the given order):
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1. If the goal template has a clause \replacewith(rw), where rw is a formula
or a term, then focus is replaced with ι(rw). If rw is a term and the type Anew

of ι(rw) is not a subtype of the type Aold of focus (Anew 6v Aold), then focus
is replaced with (Aold )ι(rw) instead of ι(rw) (a cast has to be introduced to
prevent ill-formed terms).

2. If the goal template has a clause \replacewith(rw), where rw is a sequent,
then the formula containing focus is removed from Γ ` ∆, and for each for-
mula φ in rw the formula Uι(φ) is added (on the correct side).

3. If the goal template has a clause \add(add), then for each formula φ in add
the formula Uι(φ) is added (on the correct side).

The complete application of a taclet involves duplicating a proof goal and
applying each of its goal templates. In case of taclets that do not have any goal
templates, this actually closes the proof goal.

Definition 17 (Applying a Taclet). Suppose that a matching instantiation
(ιt, ι,U , Γ ` ∆, focus) of a taclet t is given, where Γ ` ∆ is the sequent of one
proof goal g. Carrying out the application of t means performing the following
steps (in the given order):

1. n new proof goals with sequent Γ ` ∆ are created as children of g, where n
is the number of goal templates of t. For n = 0 the goal g is closed.

2. Each of the goal templates of t is applied to one of the new goals, given the
matching instantiation (ιt, ι,U , Γ ` ∆, focus).

Example 10. We continue Example 9 and apply instAll with the matching
instantiation shown there. The taclet instAll has only a single goal template,
so the first step is to duplicate the initial sequent:

∀o. f (o)
.
= o.a, f (self )

.
= 1 ` {i := 2}(self .a

.
= 1)

∀o. f (o)
.
= o.a, f (self )

.
= 1 ` {i := 2}(self .a

.
= 1)

Applying the goal template here only means to carry out the \add clause. The
formula that is to be added is (the update can be left out immediately)

Uι({\subst x; s}phi) = {skip}([o/self ](f (o)
.
= o.a)) = f (self )

.
= self .a

Finally, the rule application yields

∀o. f (o)
.
= o.a, f (self )

.
= 1, f (self )

.
= self .a ` {i := 2}(self .a

.
= 1)

∀o. f (o)
.
= o.a, f (self )

.
= 1 ` {i := 2}(self .a

.
= 1)

4.6 Taclets in Context: Taclet-Based Proofs

So far, we have introduced and defined the meaning of taclets as modification
steps that can be applied to a proof tree. Taclets can, however, also modify
the rule base that is used to construct a proof. Probably the best example for
this feature is taclet applyEqAR (⇒ Sect. 1) for rewriting terms in the presence
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of an equation in an antecedent. Applying the taclet to an equation that can
be matched by t

.
= t2 results in a new taclet rewrWithEq that replaces the

term matched by t with the term matched by t2. It is clear, however, that the
taclet rewrWithEq must not be added to the rule base “globally”, as it is only
correct for those sequents that actually contain an equation f(a)

.
= b. \addrules

is only meaningful if we have a notion of “local” rules that only exist in certain
parts of a proof tree, and that are not available elsewhere. To realise such a
notion, taclets will get a character that is similar to the formulae of a sequent:
to each sequent, a set of taclets is attached that are available for application. If
a proof is expanded by adding children to a parent goal, then these goals will
inherit all rules from the parent goal, but will possibly also get further rules that
were not present in the parent goal (like rewrWithEq).

Partially Instantiated Taclets

What is attached to sequents are not only the actual taclets, but also further
information that is necessary to restrict the applicability of taclets in the right
way. What is actually added when applying applyEqAR to the equation f(a)

.
= b

is the taclet rewrWithEq

Taclet

rewrWithEq { &�')(�*,+ (t) &�>�2�?).�@�/,+�2�64.�A4.�B�.,0C&�-�.�/10�2,3�.�51(�6�7 (t2) }

Taclet

together with the following components:

– the type instantiation ιt = {G 7→ A} (where A is the type of f(a)),
– the instantiation ι = {ι(t) 7→ f(a), ι(t2) 7→ b}, and
– the update U = skip.

The two instantiation functions have to be considered as partial in this setting,
because an inner taclet like rewrWithEq can contain schema variables or generic
types that are not part of the parent taclet and, thus, are not yet determined.

Definition 18. A partially instantiated taclet is a tuple (t, ιt, ι,U) consisting
of

– a taclet t,
– a (partial) type instantiation ιt,
– a (partial) schema variable instantiation ι, and
– an update U describing the context of the taclet application (U can be empty

or ⊥).

When applying a partially instantiated taclet, the information already given
has to be extended so that the application is possible.

Definition 19. Suppose that (t, ι′t, ι
′,U ′) is a partially instantiated taclet. A

matching instantiation of (t, ι′t, ι
′,U ′) is a tuple (ιt, ι,U , Γ ` ∆, focus) such that

– (ιt, ι,U , Γ ` ∆, focus) is a matching instantiation of t (⇒ Def. 15),
– ιt is an extension of ι′t (as function),
– ι is an extension of ι′ (as function),
– if U ′ 6= ⊥ then U = U ′.
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Taclet-Based Proofs

In contrast to a proof tree in an ordinary sequent calculus (see, for instance,
[12]), to each node of a taclet-based proof tree a set of partially instantiated
taclets is attached. The root of the tree is given the base set of rules, which will
be partially instantiated taclets (t,⊥,⊥,⊥), i.e., the instantiation mappings are
completely undefined, and the update context of taclet applications is not yet
determined. During the construction of the proof tree, further taclets can be
added to proof nodes below the root using the \addrules clause.

Taking this into account, we can extend the definitions of the effect of taclets
in the previous section.

Definition 20 (Continuation of Def. 16).

4. If the goal template has a clause \addrules(rules), then for each taclet r
in rules the partially instantiated taclet (r, ι′t, ι

′,U) is added, where
– ι′ is the restriction of ι to the schema variables of r,
– ι′t is the restriction of the mapping ιt to the types that occur within the

kinds k of schema variables sv with ι(sv) 6= ⊥.

Definition 21 (Continuation of Def. 17).

1b. Each of the new proof goals is given the same set of partially instantiated
taclets as the parent goal.

5 Reasoning about the Soundness of Taclets

Taclets are a general language for describing proof modification steps. In order to
ensure that the rules that are implemented using taclets are correct, we can con-
sider the definitions of the previous sections and try to derive that no incorrect
proofs can be constructed using the taclets. This promises to be tedious work,
however, and is for a larger number of taclets virtually useless if the reasoning
is performed informally: we are bound to make mistakes.

For treating the correctness of taclets in a more systematic way, we would
rather like to have some calculus for reasoning about soundness of taclets. This
will be provided in this section for some of the features of taclets.12 Note, that
the following two translation steps correspond to the two main ingredients of
taclets in the end of Sect. 1 (page 36).

– We describe a translation of taclets into formulae (the meaning formulae of
taclets), such that a taclet is sound if the formula is valid. This translation
captures the semantics of the different clauses that a taclet can consist of.
Meaning formulae do, however, still contain schema variables, which means
that for proving their validity methods like induction over terms or programs
are necessary.

12 The issue of metavariables (⇒ Sect. 3), for instance, will not be taken into account
on the next pages.
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– A second transformation handles the elimination of schema variables in
meaning formulae, which is achieved by replacing schema variables with
Skolem terms or formulae. The result is a formula of first order logic or
dynamic logic (depending on the expressions that turned up in the taclet),
such that the original formula is valid if the derived formula is valid. This
step is only possible for certain kinds of schema variables; handling schema
variables for program entities, in particular, can be difficult or impossible
[14]. Depending on the kind of the schema variable, it can happen that only
an incomplete transformation is possible, in the sense that the resulting for-
mula can be invalid although the meaning formula actually is valid and the
taclet is sound.

The two steps can be employed in different settings:

– The first step can be carried out, and one can reason about the resulting for-
mula using an appropriate proof assistant, e.g. based on higher-order logic.
For taclets that contain JAVA CARD programs, this will usually require to
have a formalisation of the JAVA CARD semantics for the chosen proof assis-
tant. In this context, some of the assignment rules for JAVA CARD [13] have
been proven correct by [15] using the Isabelle/HOL proof assistant [8] and
the Bali formalisation of JAVA [16]. [17] follow a similar strategy and prove
the correctness of certain rules for the symbolic execution of JAVA referring
to an existing JAVA semantics in rewriting logic [18].

– Both steps can be carried out, which opens up for a wider spectrum of
provers or proof assistants that the resulting formulae can be tackled with.
The formulae can in particular be treated by a prover for dynamic logic
itself, such as KeY. This is applicable for lemma rules, i.e., for taclets which
can be proven sound referring to other—more basic—taclets. The complete
translation from taclets to formulae of dynamic logic can automatically be
performed by KeY and makes it possible to write and use lemmas whenever
this is useful, see [14].

We will in the following first give a recapitulation about when rules of a
sequent calculus are sound, and then show how this notion can be applied to
the taclet concept. It has to be noted, however, that although reading the fol-
lowing pages in detail is not necessary for defining new taclets, it might help to
understand what happens when lemmas are loaded in KeY.

5.1 Soundness in Sequent Calculi

In the whole section we write (Γ ` ∆)∗ :=
∧
Γ →

∨
∆ for the formula that ex-

presses the meaning of the sequent Γ ` ∆. This formula is, in particular:

(` φ)∗ = φ, (φ `)∗ = ¬φ.

By the validity of a sequent we consequently mean the validity of the disjunction
(Γ ` ∆)∗.



74 Reasoning about the Soundness of Taclets

A further notation that we are going to use is the following “union” of two
sequents

(
Γ1 ` ∆1

)
∪

(
Γ2 ` ∆2

)
:= Γ1, Γ2 ` ∆1, ∆2

where we assume that duplicate formulae are implicitly removed.

Definition 22 (Soundness). A sequent calculus C is sound if only valid se-
quents are derivable in C, i.e., if the root Γ ` ∆ of a closed proof tree is valid.

This general definition does not refer to particular rules of a calculus C, but
treats C as an abstract mechanism that determines a set of derivable sequents.
For practical purposes, however, it is advantageous to formulate soundness in a
more “local” fashion and to talk about the rules (or taclets implementing the
rules) of C. Such a local criterion can already be given when considering rules
in a very abstract sense: a rule R can be considered as an arbitrary (but at least
semi-decidable) relation between tuples of sequents (the premisses) and single
sequents (the conclusions). Consequently, (〈P1, . . . , Pk〉, Q) ∈ R means that the
rule R can be applied in an expansion step

P1 · · · Pk

Q

The following lemma relates the notion of soundness of a calculus with rules:

Lemma 1. Suppose that for each rule R ∈ C of a calculus C and all tuples
(〈P1, . . . , Pk〉, Q) ∈ R the following implication holds:

if P1, . . . , Pk are valid, then Q is valid. (1)

Then the calculus C is sound.

If condition (1) holds for all tuples (〈P1, . . . , Pk〉, Q) ∈ R of a rule R, then
this rule is also called sound.

5.2 A Basic Version of Meaning Formulae

In our case, the rules of a calculus C are defined through taclets t over a set SV
of schema variables, and within the next paragraphs we discuss how Lem. 1 can
be applied considering such a rule. For a start, we consider a taclet whose \find
pattern is a sequent and that has the following basic shape:

Taclet

t1 { &�2,>�>�D�?).,> (assum) &�')(�*4+ (findSeq) &4(�*PZ�.�[�DP.�*�64Z�642�6�.
&�-�.�/10�2,3�.�51(�6�7 (rw1) &�2�+�+ (add1);
...

&�-�.�/10�2,3�.�51(�6�7 (rwk) &�2�+�+ (addk) };

Taclet
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Using text-book notation for rules in sequent calculi (as in Fig. 3), the taclet
describes the rule

rw1 ∪ add1∪ assum∪ (Γ ` ∆) · · · rwk ∪ addk ∪ assum∪ (Γ ` ∆)

findSeq∪ assum∪ (Γ ` ∆)

In order to apply Lem. 1, it is then necessary to show implication (1) for all
possible applications of the rule, i.e., essentially for all possible ways the schema
variables that now turn up in the sequents can be instantiated. If ι is such a
possible instantiation (⇒ Def. 15), and if Γ ` ∆ is an arbitrary sequent, then

Pi = ι(rwi ∪ addi ∪ assum) ∪ (Γ ` ∆) (i = 1, . . . , k),
Q = ι(findSeq ∪ assum) ∪ (Γ ` ∆)

(2)

Implication (1)—which is a global soundness criterion—can be replaced with
a local implication:

(
P ∗

1 ∧ . . . ∧ P ∗
k → Q∗

)
is valid. (3)

Inserting the sequents (2) extracted from taclet t1 into (3) leads to a formula
whose validity is sufficient for implication (1):

P ∗
1 ∧ . . . ∧ P ∗

k → Q∗ =

∧k

i=1

(
ι(rwi ∪ addi ∪ assum) ∪ (Γ ` ∆)

)∗

→
(
ι(findSeq∪ assum) ∪ (Γ ` ∆)

)∗ (4)

In order to simplify the right side of Eq. (4), we can now make use of the fact
that ι distributes through all propositional connectives (→, ∧, ∨, etc.) and also
through the union of sequents. Furthermore, there is a simple law describing the
relation between ∗ and the union of sequents:

(P ∪Q)∗ ≡ P ∗ ∨Q∗.

Thus, the formulae of Eq. (4) are equivalent to

ι
( k∧

i=1

(
rwi ∪ addi ∪ assum ∪ (Γ ` ∆)

)∗
→

(
findSeq∪ assum ∪ (Γ ` ∆)

)∗
)

and can then be simplified to

ι
( k∧

i=1

(
rwi∗ ∨ addi∗

)
→

(
findSeq∗ ∨ assum∗

))

∨ (Γ ` ∆)∗

Showing that this formula holds for all sequents Γ ` ∆, i.e., in particular for the
empty sequent, is equivalent to proving

ι
( k∧

i=1

(
rwi∗ ∨ addi∗

)
→

(
findSeq∗ ∨ assum∗

))
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for all possible instantiations ι. We will call the formula

M(t1) =
k∧

i=1

(
rwi∗ ∨ addi∗

)
→

(
findSeq∗ ∨ assum∗

)
(5)

the meaning formula of t1. From the construction of M(t1), it is clear that if
M(t1) is valid whatever expressions we replace its schema variables with, then
the taclet t1 will be sound.

Meaning Formulae for Taclets that do not contain all clauses

We can easily adapt Eq. (5) if some of the clauses of t1 are missing in a taclet:

– If the \find clause is missing: in this case, findSeq can simply be considered
as the empty sequent, which means that we can set findSeq∗ = false in
Eq. (5).

– If \assumes or \add clauses are missing: again we can assume that the
respective sequents are empty and set

assum∗ = false, addi∗ = false

– If a clause \replacewith(rwi) is not present: then we can normalise by
setting rwi = findSeq, which means that the taclet will replace the focus of
the application with itself. If both \replacewith and \find are missing, we
can simply set rwi∗ = false.

Example 11. We consider the taclet impRight (⇒ Fig. 4) from Sect. 1 that elim-
inates implications within the succedent. The taclet represents the rule schema

phi ` psi

` phi→ psi

and the meaning formula is the logically valid formula

M(impRight)

= ( ¬phi ∨ psi
︸ ︷︷ ︸

=rw1∗

) → ( phi → psi
︸ ︷︷ ︸

=findSeq∗

) ≡ ¬(phi → psi) ∨ (phi → psi).

5.3 Meaning Formulae for Rewriting Taclets

The construction given in the previous section can be carried over to rewriting
taclets.

Taclet

t2 { &�2,>�>�D�?).,> (assum) &�')(�*4+ (findTerm) &�(�*PZ�.�[�DP.�*464Z�642�64.
&�-�.�/10�2,3�.�51(�6�7 (rw1) &�2�+�+ (add1);
...

&�-�.�/10�2,3�.�51(�6�7 (rwk) &�2�+�+ (addk) };

Taclet
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In this case, findTerm and rw1, . . . , rwk are schematic terms. We can, in fact,
reduce the taclet t2 to a non-rewriting taclet (note, that the union operator ∪
is not part of the actual taclet language).

Taclet

t2b { &�2,>�>�D�?G.,> (assum) &4(�*,Z�.�[�DP.�*464Z�642�64.
&�2�+�+ ( (findTerm=rw1 ==>) ∪ add1 );

...

&�2�+�+ ( (findTerm=rwk ==>) ∪ addk ) };

Taclet

We create a taclet that adds equations findTerm=rw1, . . . , findTerm=rwk to
the antecedent. Using taclet t2b and a general rule for applying equations in
the antecedent, the effect of t2 can be simulated.13 On the other hand, also
taclet t2b can be simulated using t2 and standard rules (cut, reflexivity of
equality), which means that it suffices to consider the soundness of t2b. Eq. (5)
and some propositional simplifications then directly give us the meaning formula

M(t2b) ≡ M(t2) =

k∧

i=1

(
findTerm

.
= rwi→ addi∗

)
→ assum∗ (6)

In the same way, rewriting taclets for formulae can be treated, if equations
are replaced with equivalences:

k∧

i=1

(
(findFor↔ rwi) → addi∗

)
→ assum∗ (7)

5.4 Meaning Formulae in the Presence of State Conditions

Taclets that do not contain the statement \inSequentState (i.e., unlike all
taclets whose soundness we have tackled so far) require a bit more care when
deriving meaning formulae. As introduced in Sect. 4.1, there are two further
modes that taclets can have, \sameUpdateLevel and the “default” mode without
any flags. From the soundness point of view, it is meaningful to consider the
following two categories of taclets:

– Taclets with mode \sameUpdateLevel and non-rewriting taclets with default
mode: in contrast to taclets with mode \inSequentState, such taclets can
also be applied in the scope of updates (see Table 7 on page 59). It is ensured
that all parts of the taclets work in the same update context, i.e., the same
updates will occur above the taclet application focus, above assumptions of
the taclet (\assumes) and above expressions that are modified or added by
the clauses \replacewith and \add.

13 Strictly speaking, this transformation only works if findTerm and rwi are not in-
stantiated to terms that contain free variables from the application context, as it is
allowed in the second item of Def. 14. We can imagine to implicitly add universal
quantifiers for such variables.
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– Rewriting taclets with default mode: this is the most liberal case, in which
the application focus can be in the scope of arbitrary modal operators. This
means that the application focus can in particular be located in a different
state from assumptions of the taclet (\assumes) or formulae that are added
by an \add clause.

The following paragraphs sketch how meaning formulae for taclets of these two
kinds can be created.

Taclets with \sameUpdateLevel, Non-Rewriting Taclets with Default Mode

We only consider a taclet in default mode in which \find pattern is a se-
quent, but the same reasoning applies to rewriting taclets with the statement
\sameUpdateLevel.

Taclet

t3 { &�2,>�>�D�?).,> (assum) &�')(�*4+ (findSeq)
&�-�.�/10�2,3�.�51(�6�7 (rw1) &�2�+�+ (add1);
...

&�-�.�/10�2,3�.�51(�6�7 (rwk) &�2�+�+ (addk) };

Taclet

In text-book notation, the rule implemented by the taclet will consequently look
as follows:

U rw1 ∪ U add1 ∪ U assum ∪ (Γ ` ∆)
· · ·

U rwk ∪ U addk ∪ U assum ∪ (Γ ` ∆)

U findSeq ∪ U assum ∪ (Γ ` ∆)

We write U (Γ ` ∆) for denoting that an arbitrary update U is added in front of
each formula of Γ ` ∆. For such a rule, we can derive a meaning formula exactly
as in Sect. 5.2, with the only difference that the whole formula is preceded with
the update U :

U
( k∧

i=1

(
rwi∗ ∨ addi∗

)
→

(
findSeq∗ ∨ assum∗

))

(8)

Fortunately, now the update U can be left out: because U can be the empty
update skip, the validity of (8) entails that also the formula after U has to
be valid. But if the formula after U is logically valid, i.e., if it is true for all
structures and states, then (8) also has to hold for arbitrary updates U . We can
thus define the meaning formula of t3 as in Sect. 5.2:

M(t3) =

k∧

i=1

(
rwi∗ ∨ addi∗

)
→

(
findSeq∗ ∨ assum∗

)
(9)
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Rewriting Taclets with Default Mode

The second and more difficult case concerns rewriting taclets where the applica-
tion focus can be in the scope of arbitrary modal operators. We consider a taclet
similar to the one treated in Sect. 5.3.

Taclet

t4 { &�2,>�>�D�?).,> (assum) &�')(�*4+ (findTerm)
&�-�.�/10�2,3�.�51(�6�7 (rw1) &�2�+�+ (add1);
...

&�-�.�/10�2,3�.�51(�6�7 (rwk) &�2�+�+ (addk) };

Taclet

The strategy followed in Sect. 5.3 for deriving a meaning formula for t2 was to
find an equivalent non-rewriting taclet. For t4, such a taclet would need to have
the following shape:

Taclet

t4b { &�2,>�>�D�?G.,> (assum) &4(�*,Z�.�[�DP.�*464Z�642�64.
&�2�+�+ ( (∀U .U (findTerm=rw1) ==>) ∪ add1 );

...

&�2�+�+ ( (∀U .U (findTerm=rwk) ==>) ∪ addk ) };

Taclet

The quantifiers ∀U . have to be added in order to ensure that the inserted equa-
tions are also applicable in the scope of modal operators. Such quantifiers over
states do not exist in our dynamic logic, but can be added in a straight-forward
way (they are, in fact, present in the KeY implementation in a similar form).
The meaning formula of t4b would be

M(t4b) =

∧k

i=1

(
∀U .U (findTerm

.
= rwi) → addi∗

)

→ assum∗

5.5 Meaning Formulae for Nested Taclets

So far, only taclets were considered that do not contain the \addrules clause
(⇒ Sect. 4.6). The keyword \addrules makes it possible to nest taclets and to
use one taclet as part of another. For a start, we will consider taclets of the
following shape:

Taclet

t3 { &�2,>�>�D�?).,> (assum) &�')(�*4+ (findSeq) &�>�2�?).�@�/,+�2�64.�A4.�B�.,0
&�-�.�/10�2,3�.�51(�6�7 (rw1) &�2�+�+ (add1) &�2�+�+�-�DG0�.,> (s1_1; ...; s1_m1);

...

&�-�.�/10�2,3�.�51(�6�7 (rwk) &�2�+�+ (addk) &�2�+�+�-�DG0�.,> (sk_1; ...; sk_mk) };

Taclet
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where s1_1, . . . , sk_mk are again taclets (we will call them sub-taclets in the
next paragraphs). We can construct meaning formulae of such taclets recursively
and using a similar argument as in Sect. 5.3 about rewriting taclets. Essentially,
one can imagine replacing taclet t3 with a taclet that introduces the meaning
formulae of the sub-taclets s1_1, . . . in the antecedent using the \add clause:

Taclet

t3b {

&�2,>�>�D�?).,> (assum) &�')(�*,+ (findSeq) &�>�2�?).�@�/,+�2�64.�A4.�B�.,0
&�-�.�/10�243�.�51(�6�7 (rw1) &�2�+�+ ((M(s1 1), ..., M(s1 m1) ==>) ∪ add1);

...

&�-�.�/10�243�.�51(�6�7 (rwk) &�2�+�+ ((M(sk 1), ..., M(sk mk) ==>) ∪ addk) };

Taclet

This is not directly possible, because the meaning formulae of the sub-taclets
will contain schema variables whose instantiation is not yet determined when
applying t3, but it leads us to the following variant of Eq. (5):

M(t3) =

∧k

i=1

(
M(si 1) ∧ · · · ∧M(si mi) → (rwi∗ ∨ addi∗)

)

→
(
findSeq∗ ∨ assum∗

)

In the same way, Eq. (6) and Eq. (7) can be extended to take sub-taclets into
account.

Example 12. In order to illustrate meaning formulae for nested taclets, we con-
sider the taclet applyEqAR (⇒ Sect. 1). The meaning formulae for the sub-taclet
rewrWithEq and the complete taclet are

M(rewrWithEq) = t
.
= t2

M(applyEqAR) = M(rewrWithEq) ∨ t 6
.
= t2

= t
.
= t2 ∨ t 6

.
= t2

Obviously, M(rewrWithEq) is not a valid formula for most instantiations of the
variables t and t2, which reflects the observation from Sect. 4.6 that the taclet
is not correct in general. As M(applyEqAR) is a tautology, however, rewrWithEq
is correct in situations in which applyEqAR can be applied, which distinguishes
admissible instantiations of t and t2.

Unfortunately, there is one difficulty when dealing with nested taclets. For
some taclets, which we consider in the following as ill-formed, the meaning for-
mulae defined so far do not ensure soundness:

Example 13. We derive the meaning formula of the following taclet, which—at
first glance—seems to implement the cut rule, but which in fact can be used to
add arbitrary formulae to a sequent:
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Taclet

illegalTac3 { &�2�+�+�-�D10�.4> ( introduceRight { &�2�+�+ (==> phi) } );

&�2�+�+�-�D10�.,> ( introduceLeft { &�2�+�+ (phi ==>) } ) };

Taclet

The “meaning formula” is the tautology M(illegalTac3) ≡ phi ∨ ¬phi, how-
ever. This does not reflect that the two occurrences of phi can be instantiated
independently when applying introduceRight and introduceLeft.

The problem with taclets like this is that different instantiations of schema
variables can be chosen when applying the sub-taclets, whereas one schema
variable will only represent one and the same expression in the meaning for-
mula. illegalTac3 can be corrected to a taclet that better reflects the nature
of schema variables in sub-taclets:

Taclet

legalTac3 { &�2�+�+�-�D10�.,> ( introduceRight { &�2�+�+ (==> phi1) } );

&�2�+�+�-�D10�.,> ( introduceLeft { &�2�+�+ (phi2 ==>) } ) };

Taclet

Now, the meaning formula is M(legalTac3) ≡ ¬phi1 ∨ phi2 and is no longer
valid.

The following requirement will prohibit taclets like illegalTac3 and could
be seen as an item that belongs to Sect. 4.2 about well-formedness of taclets.
It is, however, only important when deriving meaning formulae of taclets (it is
irrelevant for the effect of taclets according to Sect. 4.5), and we assume only
in this section that it is satisfied by considered taclets. We demand that com-
mon schema variables of sub-taclets of a taclet t also appear in t outside of
sub-taclets, which entails that they are already instantiated when applying t.
Arbitrary taclets can easily be transformed into equivalent taclets that respect
this property.

Requirement 3 (Uniqueness of Variables in Sub-Taclets). If a taclet t
has two sub-taclets containing a common schema variable sv, then sv also ap-
pears in t outside of \addrules clauses.

5.6 Elimination of Schema Variables

Meaning formulae of taclets in general contain schema variables, i.e., placeholders
for syntactic constructs like terms, formulae or programs. In order to prove
a taclet sound, it is necessary to show that its meaning formula is valid for
all possible instantiations of the schema variables. Looking at Example 12, for
instance, we would have to prove the formula

M(applyEqAR) = t
.
= t2 ∨ t 6

.
= t2

for all terms ι(t), ι(t2) that we can substitute for t, t2. Note, that this syntactic
quantification ranges over terms and is completely different from a first order
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formula ∀x : integer. p(x), which is semantic and expresses that x ranges over all
integers.

Instead of explicitly enumerating instantiations using techniques like induc-
tion over terms, it is to some degree possible, however, to replace the syntactic
quantification with an implicit semantic quantification through the introduction
of Skolem symbols. For M(applyEqAR), it is sufficient to prove the formula

φ = c
.
= d ∨ c 6

.
= d

in which c, d are fresh constant symbols. The validity of M(applyEqAR) for all
other instantiations follows, because the symbols c, d can take the values of
arbitrary terms ι(t), ι(t2). Fortunately, φ is only a first order formula that can
be tackled with a calculus as defined in [13].

We will only sketch how Skolem expressions can be introduced for some of the
schema variable kinds that are described in Sect. 2. Schema variables for program
entities will be left out at this point, a detailed description that also covers such
variables can be found in [14]. Also, more involved features like generic types will
not be considered here. For the rest of the section, we assume that a taclet t and
its meaning formulaM(t) are fixed. We will then construct an instantiation ιsk of
the schema variables that turn up in t with Skolem expressions. In the example
above, this instantiation would be

ιsk = {t 7→ c, t2 7→ d}

Variables: \variables A

Because of Def. 13, instantiations of schema variables va for logical variables are
always distinct. Such variables only occur bound in taclets and the identity of
bound variables does not matter. Therefore, ιsk(va) can simply be chosen to be
a fresh logical variable ιsk(va) = x of type A.

Terms: \term A

As already shown in the example above, a schema variable te for terms can be
eliminated by replacing it with a constant or a function term. In general, also
the context variables Πt(te) of te have to be taken into account and have to
appear as arguments of the function symbol. The reason is that such variables
can occur in the term that is represented by te. We choose the instantiation
ιsk(te) = fsk(x1, . . . , xl), where

– x1, . . . , xl are the instantiations of the schema variables va1, . . . , val, i.e.,
xi = ιsk(vai),

– va1, . . . , val are the (distinct) context variables of the variable te in the
taclet t: Πt(te) = {va1, . . . , val},

– fsk : A1, . . . , Al → A is a fresh function symbol,

– A1, . . . , Al are the types of x1, . . . , xl and te is of kind \term A.
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As a further complication, the symbol fsk has to be non-rigid (unless the
schema variable modifier rigid is used), because the term that is represented
by te can also be non-rigid. This entails that updates in front of fsk matter,
in contrast to rigid function symbols where such updates can immediately be
removed, e.g.

{o.a := 3}fsk(x) 6= fsk(x)

Formulae: \formula

The elimination of schema variables phi for formulae is very similar to the elim-
ination of term schema variables. The main difference is, obviously, that instead
of a non-rigid function symbol a non-rigid predicate symbol has to be introduced:
ιsk(phi) = psk(x1, . . . , xl), where

– x1, . . . , xl are the instantiations of the schema variables va1, . . . , val, i.e.,
xi = ιsk(vai),

– va1, . . . , val are the (distinct) context variables of the variable te in the
taclet t: Πt(te) = {va1, . . . , val},

– psk : A1, . . . , Al is a fresh predicate symbol,
– A1, . . . , Al are the types of x1, . . . , xl.

Skolem Terms: \skolemTerm A

Schema variables of kind \skolemTerm A are responsible for introducing fresh
constant or function symbols in a proof. Such variables could in principle be
treated like schema variables for terms, but this would strengthen meaning for-
mulae excessively (often, the formulae would no longer be valid even for sound
taclets).

We can handle schema variables sk for Skolem terms more faithfully: if in
implication (1) the sequents P1, . . . , Pk contain symbols that do not occur in Q,
then these symbols can be regarded as universally quantified. Because a negation
occurs in front of the quantifiers in (3) (the quantifiers are on the left side of
an implication), the symbols have to be considered as existentially quantified
when looking at the whole meaning formula. This entails that schema variables
for Skolem terms can be eliminated and replaced with existentially quantified
variables: ιsk(sk) = x, where x is a fresh variable of type A.14 At the same time,
an existential quantifier ∃x. has to be added in front of the whole meaning
formula.

Example 14. The meaning formula of the taclet allRight (⇒ Sect. 1) is

M(allRight) = {\subst x; cnst}(phi) → ∀x. phi

In order to eliminate the schema variables of this taclet, we first assume that
the generic type G of the taclet is instantiated with a concrete type A. Then,

14 Strictly speaking, this violates Def. 5, because schema variables for Skolem terms
must not be instantiated with variables according to this definition. The required
generalisation of the definition is, however, straightforward.
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the schema variable x can be replaced with a fresh logical variable ιsk(x) = y
of type A. The schema variable phi is eliminated through the instantiation
ιsk(phi) = psk(y), where psk is a fresh non-rigid predicate symbol. Finally, we can
replace the schema variable cnst for Skolem terms with a fresh logical variable
ιsk(cnst) = z of type A and add an existential quantifier ∃z. . The resulting
formula without schema variables is

∃z. ιsk(M(allRight)) = ∃z. (psk(z) → ∀y. psk(y))
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Abstract. We present a datastructure for storing memory contents of
imperative programs during symbolic execution—a technique frequently
used for program verification and testing. The concept, called updates,
can be integrated in dynamic logic as runtime infrastructure and mod-
els both stack and heap. Here, updates are systematically developed as
an imperative programming language that provides the following con-
structs: assignments, guards, sequential composition and bounded as well
as unbounded parallel composition. The language is equipped both with
a denotational semantics and a correct rewriting system for execution,
whereby the latter is a generalisation of the syntactic application of sub-
stitutions. The normalisation of updates is discussed. All results and the
complete theory of updates have been formalised and proven using the
Isabelle/HOL proof assistant.

1 Introduction

First-Order Dynamic Logic [1] is a program logic that enables to reason about the
relation between pre- and post-states of imperative programs. One way to build
calculi for dynamic logic is to follow the symbolic execution paradigm and to ex-
ecute programs (symbolically) in forward direction. This requires infrastructure
for storing the memory contents of the program, for updating the contents when
assignments occur and for accessing information whenever the program tries to
read from memory. Sequent calculi for dynamic logic often represent memory
using formulas and handle state changes by renaming variables and by relat-
ing pre- and post-states with equations. All information about the considered
program states is stored in the side-formulas of a sequent Γ ` 〈α〉 φ, ∆.

As an alternative, this paper presents a datastructure called Updates, which
are a generalisation of substitutions designed for storing symbolic memory con-
tents. When using updates, typical sequents during symbolic execution have
the shape Γ ` {u} 〈α〉 φ, ∆. The program α is preceded by an update u that
can determine parts of the program state. Compared with side-formulas, updates
(i) attach information about the program state directly to the program, (ii) avoid
the introduction of new symbols, (iii) can be simplified and avoid the storage of
obsolete information, like of assignments that have been overridden by other as-
signments, (iv) represent accesses to variables, array cells or instance attributes
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(in object-oriented languages) in a uniform way, (v) delay case-distinctions that
can become necessary due to aliasing, (vi) can be eliminated mechanically once
a program has been worked off completely.

Historically, updates have evolved over years as a central component of the
KeY system [2]—a system for deductive verification of imperative programs.
They are used both for interactive and automated verification. In the present
paper, we define updates as a formal language (independently of particular pro-
gram logics) and give them a denotational semantics based on model-theoretic
semantics of first-order predicate logic. The language is proposed as an inter-
mediate language to which sequential parts of more complicated languages (like
Java) can stepwise be translated. In order to mechanically compute the effect
of updates, we give a rewriting system that allows to simplify, execute or elim-
inate updates. Further rewriting rules and identities enable simplification and
normalisation. The main contributions of the paper are new update constructs
(in particular quantification), the development of a complete metatheory of up-
dates and its formalisation1 using the Isabelle/HOL proof assistant [3], including
proofs of all lemmas that are given in the present paper.

The paper is organised as follows: Sect. 2 gives an example for the applica-
tion of updates as a runtime infrastructure. Sect. 3 and 4 introduce syntax and
semantics of a basic version of updates in the context of a minimalist first-order
logic. Sect. 5 and 6 contain the rewriting system for executing updates. Sect. 7
adds an operator for sequential composition to the update language. Sect. 8
states soundness and completeness of the rewriting system for update applica-
tion. Sect. 9 shows how stack and heap structures can be modelled and modified
using updates, which is applied in Sect. 10 about symbolic execution. Sect. 11
discusses laws for simplification of updates, and Sect. 12 sketches a method for
normalisation of updates.

2 Updates for Symbolic Execution in Dynamic Logic

We give an example for symbolic execution using updates in dynamic logic.
Notation and constructs used here are later introduced in detail. The program
fragment in question is written in a Java-like language and is executed in the
context of a class/record List representing doubly-linked lists with attributes
next , prev and val for the successor, predecessor and value of list nodes:

max = if (a.val
.
< a.next .val) g = a.next.val ; else g = a.val ;

where a and g are program variables pointing to list nodes. The initial state of
program execution is specified in an imperative way using an update:

init = a.prev := nil | b.next := nil | a.next := b | b.prev := a |

a.val := c | b.val := d

1 www.cs.chalmers.se/~philipp/updates.thy, ≈ 3500 lines Isabelle/Isar code
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init can be read as an program that is executing a number of assignments in
parallel and that is setting up a list with nodes a and b. In case a

.
= b—which is

possible because we do not specify the opposite—the two nodes will collapse to
the single node of a cyclic list and will carry value d: assignments that literally
occur later (b.val := d) can override earlier assignments (a.val := c). This means
that parallel composition in updates also has a sequential component: while the
left- and right-hand sides of the assignments are all evaluated in parallel, the
actual writing to locations is carried out sequentially from left to right.

When adding updates to a dynamic logic, they can be placed in front of modal
operators for programs, like in {init} 〈max 〉 φ. The diamond formula 〈max 〉 φ
alone expresses that a given formula φ holds in at least one final state of max .
Putting the update init in front means that first init and then the program max
is supposed to be executed—init sets up the pre-state of max .

We execute max symbolically by working off the statements in forward di-
rection. Effects of the program are either appended to the update init or are
translated to first-order connectives. We denote execution steps of max by  
and write ≡ for an update simplification step. init is used as an abbreviation.

{init} 〈if (a.val
.
< a.next .val) g = a.next.val ; else g = a.val ;〉 φ

A conditional statement can be translated to propositional connectives. The
branch condition is co = (a.val

.
< a.next .val).

 {init}
(

(co ∧ 〈g = a.next .val ;〉 φ) ∨ (¬co ∧ 〈g = a.val ;〉 φ)
)

The application of init distributes through propositional connectives. Applying
init to co yields the condition co ′ = ({init} co) ≡ ((if a

.
= b then d else c)

.
< d).

≡ (co′ ∧ {init} 〈g = a.next .val ;〉 φ ∨ (¬co ′ ∧ {init} 〈g = a.val ;〉 φ)

The program assignments are turned into update assignments that are sequen-
tially ( ; ) connected with init .

 (co′ ∧ {init ; g := a.next .val} φ) ∨ (¬co ′ ∧ {init ; g := a.val} φ)

The updates are simplified by turning sequential composition ; into parallel
composition | . The update init has to be applied to the right-hand sides, which
become ({init} a.next .val) ≡ d and ({init} a.val) ≡ (if a

.
= b then d else c).

≡ (co′ ∧ {init | g := d} φ) ∨ (¬co ′ ∧ {init | g := (if a
.
= b then d else c)} φ)

The last formula is logically equivalent to the original formula {init} 〈max 〉 φ
and can further be simplified by applying the updates to φ. In all points of the
proof, updates in front of programs specify the memory contents. An implemen-
tation like in KeY can, of course, easily carry out all shown steps automatically.

3 Syntax of Terms, Formulas and Updates

The present paper is a self-contained account on updates. To this end, we ab-
stract from concrete program logics and define syntax and semantics of a (min-
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imalist)2 first-order logic that is equipped with updates. Updates can, however,
be integrated in virtually any predicate logic, e.g., in dynamic logic.

We first define a basic version of our logic that contains the most common
constructors for terms and formulas (see e.g. [4]), the equality predicate

.
= and

a strict order relation
.
<, as well as operators for minimum and conditional

terms. The two latter are not strictly necessary, but enable a simpler definition
of laws and rewriting rules. In this section, updates are only equipped with the
connectives for parallelism, guards and quantification, sequential composition is
added later in Sect. 7.

In order to define the syntax of the logic, we need (i) a vocabulary (Σ, α) of
function symbols, where α : Σ →

�
defines the arity of each symbol, and (ii) an

infinite set Var of variables.

Definition 1. The sets Ter, For and Upd of terms, formulas and updates are
defined by the following grammar, in which x ∈ Var ranges over variables and
f ∈ Σ over functions:

Ter ::= x || f(Ter , . . . ,Ter) || if For then Ter else Ter || min x.For || {Upd} Ter

For ::= true || false ||For ∧ For ||For ∨ For || ¬For || ∀x.For || ∃x.For ||

Ter
.
= Ter ||Ter

.
< Ter || {Upd} For

Upd ::= skip || f(Ter , . . . ,Ter) := Ter ||Upd |Upd || if For {Upd} ||for x {Upd}

The update constructors represent the empty update skip, assignments to func-
tion terms f(s1, . . . , sn) := t, parallel updates u1 | u2, guarded updates if φ {u},
and quantified updates for x {u}. The possibility of having function terms as
left-hand sides of assignments is crucial for modelling heaps. In Sect. 2, expres-
sions like a.prev are really function terms prev (a), but we use the more common
notation from programming languages. More details are given in Sect. 9. There
are also constructors for applying updates to terms and to formulas (like {u} φ).

We mostly use vector notation for the arguments t̄ of functions. Operations
on terms are extended canonically or in an obvious way to vectors, for in-
stance f({u} t̄) = f({u} t1, . . . , {u} tn), valS,β(t̄) = (valS,β(t1), . . . , valS,β(tn)),
fv(t̄) =

⋃

i fv(ti), (t̄
.
= s̄) = (t1

.
= s1 ∧ · · · ∧ tn

.
= sn).

4 Semantics of Terms, Formulas and Updates

The meaning of terms and formulas is defined using classical model-theoretic
semantics. We consider interpretations as mappings from locations to individuals
of a universe U (the predicates

.
= and

.
< are handled separately):

Definition 2. Given a vocabulary (Σ, α) of function symbols and an arbitrary
set U , we define the set Loc(Σ,α),U of locations over (Σ, α) and U by

Loc(Σ,α),U := {〈f, (a1, . . . , an)〉 | f ∈ Σ, α(f) = n, a1, . . . , an ∈ U}

2 We do not include many common features like arbitrary predicate symbols, in order
to keep the presentation concise. Adding such concepts is straightforward.
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If the indexes are clear from the context, we just write Loc instead of Loc(Σ,α),U .

The following definition of structures/algebras deviates from common defini-
tions in the addition of a strict well-ordering on the universe.3 The well-ordering
is used for resolving clashes that can occur in quantified updates (see Example 1
and Sect. 10).

Definition 3. Suppose that a vocabulary (Σ, α) of function symbols is given. A
well-ordered algebra over (Σ, α) is a tuple S = (U, <, I), where

– U is an arbitrary non-empty set (the universe),

– < is a strict well-ordering on U , i.e., a binary relation with the properties4

• Irreflexivity: a 6< a for all a ∈ U ,
• Transitivity: a1 < a2, a2 < a3 entails a1 < a3 (a1, a2, a3 ∈ U),
• Well-orderedness: Each set ∅ 6= A ⊆ U contains an element min< A ∈ A

such that min< A < a for all a ∈ A\{min< A},
– I is a (total) mapping Loc(Σ,α),U → U (the interpretation).

A partial interpretation is a partial function Loc(Σ,α),U → U .

A (partial) function f : M → N is here considered as a subset of the cartesian
product M × N . For combining and modifying interpretations, we frequently
make use of the overriding operator ⊕, which can be found in Z [6] and many
other specification languages. For two (partial or total) functions f, g : M → N
we define

f ⊕ g := {(a 7→ b) ∈ f | for all c: (a 7→ c) 6∈ g} ∪ g

i.e., g overrides f but leaves f unchanged at points where g is not defined. For
S = (U, <, I), we also write S ⊕ A := (U, <, I ⊕ A) as a shorthand notation.

Definition 4. A variable assignment over a set Var of variables and a well-
ordered algebra (U, <, I) is a mapping β : Var → U .

Given a variable assignment β, we denote the assignment that is altered in
exactly one point as is common:

βa
x(y) :=

{

a for x = y

β(y) otherwise

From now on, we consider the vocabulary (Σ, α) and Var as fixed.

3 As every set can be well-ordered (based on Zermelo-Fraenkel set theory [5]) this
does not restrict the range of considered universes. Because the well-ordering is also
accessible through the predicate

.
<, however, the expressiveness of the logic goes

beyond pure first-order predicate logic. One can, for instance, axiomatise natural
numbers up to isomorphism with a finite set of formulas. In our experience, this is
not a problem for the application of updates, because quantification in updates will
in practice only be used for variables representing integers, objects or similar types.
On such domains, appropriate well-orderings are readily available and have to be
handled anyway.

4 Note, that well-orderings are linear, i.e., a < b, a = b, or b < a for arbitrary a, b ∈ U .
Further, well-orderings are well-founded—there are no infinite descending chains—
which enables us to use well-founded recursion when defining update evaluation.
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Definition 5. Given a well-ordered algebra S = (U, <, I) and a variable assign-
ment β, we define the evaluation of terms, formulas and updates through the
equations of Table 1 as the (overloaded) mapping

valS,β : Ter → U, valS,β : For → {tt, ff }, valS,β : Upd → (Loc → U),

i.e., in particular updates are evaluated to partial interpretations.

The most involved part of the update evaluation concerns quantified expres-
sions for x {u}, whose value is defined by well-founded recursion on (U, <). The
definition shows that quantification is a generalisation of parallel composition:
Informally, for a well-ordered universe U = {a < b < c < · · · } we have

valS,β(for x {u}) = · · · ⊕ valS,βc
x
(u) ⊕ valS,βb

x
(u) ⊕ valS,βa

x
(u)

For a general definition (see Table 1) of the partial interpretation on the right-
hand side, we need a union operator on partial functions:5

(

⋃

M
)

(x) =

{

f(x) if there is f ∈ M with f(x) 6= ⊥

⊥ otherwise

where we write f(x) = ⊥ if a partial function f is not defined at point x.

Example 1. The following examples refer to the well-ordered algebra (
�

, <, I),
where < is the standard order on

�
. We assume that the vocabulary contains

literals and operations +, ·, and that these symbols are interpreted as usual for
�

.

valS,β(a := 2) = {〈a〉 7→ 2}

In parallel composition, the effect of the left update is invisible to the right one:

valS,β(a := 2 | f(a) := 3) = {〈a〉 7→ 2, 〈f, (valS,β(a))〉 7→ 3}

The right update in parallel composition overrides the left update when clashes
occur. Here, this happens for valS,β(a) = 1:

valS,β(f(a) := 1 | f(1) := 2) = {〈f, (1)〉 7→ 2}

In contrast, for valS,β(a) 6= 1 both assignments have an effect:

valS,β(f(a) := 1 | f(1) := 2) = {〈f, (valS,β(a))〉 7→ 1, 〈f, (1)〉 7→ 2}

Quantified updates make it possible to define whole functions:

valS,β({for x {f(x) := 2 · x + 1}} f(5)) = 11

When clashes occur in quantified updates, smaller valuations of the quantified
variable will dominate. The smallest individual of (

�
, <) is 0:

valS,β(for x {a := x}) = {〈a〉 7→ 0}

5 The operator
S

is obviously not uniquely defined by the given equation, but because
of A(a) ⊆ A(b) for a < b its result is unique when defining the evaluation function.
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Table 1. Evaluation of Terms, Formulas and Updates

For terms:

valS,β(x) = β(x) (x ∈ Var)

valS,β(f(t̄)) = I〈f,valS,β(t̄)〉 (S = (U, <, I))

valS,β(if φ then t1 else t2) =

(

valS,β(t1) for valS,β(φ) = tt

valS,β(t2) otherwise

valS,β(minx. φ) =

(

min< A for A 6= ∅

min< U otherwise

where S = (U,<, I) and A = {a ∈ U | valS,βa
x
(φ) = tt}

For formulas:

valS,β(true) = tt , valS,β(false) = ff

valS,β(φ1 ∧ φ2) = tt iff ff 6∈ {valS,β(φ1), valS,β(φ2)}

valS,β(φ1 ∨ φ2) = tt iff tt ∈ {valS,β(φ1), valS,β(φ2)}

valS,β(¬φ) = tt iff valS,β(φ) = ff

valS,β(∀x. φ) = tt iff ff 6∈ {valS,βa
x
(φ) | a ∈ U}

valS,β(∃x. φ) = tt iff tt ∈ {valS,βa
x
(φ) | a ∈ U}

valS,β(t1
.
= t2) = tt iff valS,β(t1) = valS,β(t2)

valS,β(t1
.
< t2) = tt iff valS,β(t1) < valS,β(t2) (S = (U, <, I))

For updates:

valS,β(skip) = ∅

valS,β(f(s̄) := t) = {〈f, valS,β(s̄)〉 7→ valS,β(t)}

valS,β(u1 | u2) = valS,β(u1) ⊕ valS,β(u2)

valS,β(if φ {u}) =

(

valS,β(u) for valS,β(φ) = tt

∅ otherwise

valS,β(for x {u}) =
[

{A(a) | a ∈ U}

where A : U → (Loc → U) is defined by well-founded recursion on (U, <) and the equa-
tion A(a) = valS,βa

x
(u) ⊕

S

{A(b) | b ∈ U, b < a}

Application of updates: (S′ = S ⊕ valS,β(u) and α ∈ Ter ∪ For)

valS,β({u} α) = valS′,β(α)
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Update constructors can be nested arbitrarily, like in quantified parallel updates:

valS,β(for x {(f(x + 3) := x | f(2 · x) := x + 1)}) =

{〈f, (3)〉 7→ 0, 〈f, (4)〉 7→ 1, 〈f, (5)〉 7→ 2, 〈f, (6)〉 7→ 3, 〈f, (7)〉 7→ 4, . . . ,
〈f, (0)〉 7→ 1, 〈f, (2)〉 7→ 2, 〈f, (4)〉 7→ 3, 〈f, (6)〉 7→ 4, 〈f, (8)〉 7→ 5, . . . }

In the last example, both kinds of clashes occur: (i) the pair 〈f, (6)〉 7→ 3 stems
from f(x + 3) := x and is overridden by 〈f, (6)〉 7→ 4 (from f(2 · x) := x + 1),
because updates on the right side of parallel composition dominate updates on
the left side (“last-win semantics”). (ii) the pair 〈f, (4)〉 7→ 3 stems from the
valuation x 7→ 2 and is overridden by 〈f, (4)〉 7→ 1 (from x 7→ 1), because small
valuations of variables dominate larger valuations (“well-ordered semantics”).

We formalise the behaviour of updates for the latter kind of clashes:

Lemma 1. Small valuations of variables in updates override larger ones:

valS,β(for x {u})(loc) = valS,βm
x

(u)(loc)

where m =

{

min< A for A 6= ∅

arbitrary otherwise
and A = {a | valS,βa

x
(u)(loc) 6= ⊥}

We can now also introduce the equivalence symbol ≡ used in Sect. 2:

Definition 6. We call two terms, formulas or updates α1, α2∈Ter ∪ For ∪ Upd
equivalent and write α1 ≡ α2 if they are necessarily evaluated to the same value:
For all well-ordered algebras S and all variable assignments β over S,

valS,β(α1) = valS,β(α2)

≡ is a congruence relation for all constructors given in Def. 1 (see Lem. 2).

5 Application of Updates by Rewriting

Updates do in principle not increase the expressiveness of terms or formulas:
Given an arbitrary term, formula or update α, there will always be an equivalent
expression α′ ≡ α that does not contain the update application operator.6 We
obtain this result by giving a rewriting system that eliminates updates using
altogether 44 rules like {u} (t1 ∗ t2) → {u} t1 ∗ {u} t2 (with ∗ ∈ {

.
=,

.
<}).

For space reasons, we refrain from giving an introduction to the rewriting
concept and instead refer to literature, see for instance [7]. Some of our rules
have side-conditions concerning free variables, like x 6∈ fv(u), in order to avoid
variable capture. We will not dwell on details about bound renaming or give a
precise definition of the set fv(u) of free variables of an expression (see, e.g., [4]),
but assume that bound renaming is implicitly applied whenever necessary.

6 As we have not formally proved that our rewriting system that turns α into α′ is
terminating (but consider it as obvious), we do not state this as a theorem.
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Table 2. Rewriting Rules for the Application of Updates

{u} x → x (x ∈ Var) (R1)

{u} f(t̄) → non-rec(u, f, {u} t̄) (R2)

{u}
if φ then t1

else t2
→

if {u} φ then {u} t1
else {u} t2

(R3)

{u} min x. φ → min x. {u} φ (x 6∈ fv(u)) (R4)

{u} lit → lit (lit ∈ {true , false})
(R5)

{u} (φ1 ∗ φ2) → {u} φ1 ∗ {u} φ2 (∗ ∈ {∧,∨}) (R6)

{u} ¬φ → ¬{u} φ (R7)

{u} Qx. φ → Q x. {u} φ (Q ∈ {∀, ∃}, x 6∈ fv(u))
(R8)

{u} (t1 ∗ t2) → {u} t1 ∗ {u} t2 (∗ ∈ {
.
=,

.
<}) (R9)

non-rec(skip, f, t̄) → f(t̄) (R10)

non-rec(f(s̄) := r, f, t̄) → if t̄
.
= s̄ then r else f(t̄) (R11)

non-rec(g(s̄) := r, f, t̄) → f(t̄) (f 6= g) (R12)

non-rec(u1 | u2, f, t̄) →
if in-dom(f, t̄, u2)
then non-rec(u2, f, t̄)
else non-rec(u1, f, t̄)

(R13)

non-rec(if φ {u}, f, t̄) →
if φ
then non-rec(u, f, t̄)
else f(t̄)

(R14)

For x 6∈ fv(t̄) and r = min x. in-dom(f, t̄, u):

non-rec(for x {u}, f, t̄) → non-rec({x/r} u, f, t̄) (R15)

in-dom(f, t̄, skip) → false (R16)

in-dom(f, t̄, f(s̄) := r) → t̄
.
= s̄ (R17)

in-dom(f, t̄, g(s̄) := r) → false (f 6= g) (R18)

in-dom(f, t̄, u1 | u2) →
in-dom(f, t̄, u1)
∨ in-dom(f, t̄, u2)

(R19)

in-dom(f, t̄, if φ {u}) → φ ∧ in-dom(f, t̄, u) (R20)

in-dom(f, t̄, for x {u}) → ∃x. in-dom(f, t̄, u) (x 6∈ fv(t̄)) (R21)

reject(skip, u) → skip (R22)

reject(f(s̄) := t, u) → if ¬in-dom(f, s̄, u) {f(s̄) := t} (R23)

reject(u1 | u2, u) → reject(u1, u) | reject(u2, u) (R24)

reject(if φ {u1}, u) → if φ {reject(u1, u)} (R25)

reject(for x {u1}, u) → for x {reject(u1, u)} (x 6∈ fv(u)) (R26)
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Syntactic application of updates to terms or formulas, i.e., simplification of
expressions {u} α, is carried out in two phases: first, the update is propagated
to subterms or subformulas. In the second phase, when the update has reached
a function application, it is analysed whether the update assigns the represented
location. This separation of propagation and evaluation is achieved by introduc-
ing (amongst others) a non-recursive update application operator non-rec. We
also add ordinary substitution of variables as an independent operator, which is
necessary for handling quantified updates. Substitutions are discussed in Sect. 6.

In order to introduce the further operators, we extend the syntax given Def. 1
as well as the semantics of Def. 5. Practical application is realised by rewriting
rules that stepwise eliminate the operators.7

Definition 7. We define the sets TerA, ForA and UpdA of terms, formulas and
updates as in Def. 1, but with further constructors (x ∈ Var ranges over variables
and f ∈ Σ over functions):

TerA ::= · · · || {x/TerA} TerA ||non-rec(UpdA, f, (TerA, . . . ,TerA))

ForA ::= · · · || {x/TerA} ForA || in-dom(f, (TerA, . . . ,TerA), UpdA)

UpdA ::= · · · || {x/TerA} UpdA ||reject(UpdA,UpdA)

The constructors represent the explicit application of substitutions to terms,
formulas, and updates (like {x/s} t), the non-recursive application of an update u
to function terms f(t̄) (like non-rec(u, f, t̄)), the test whether an update u
assigns to the location denoted by f(t̄) (like in-dom(f, t̄, u)), and filtered updates
reject(u1, u2) (which are described in Sect. 11). We also extend the evaluation
function valS,β on TerA, ForA and UpdA by adding the following clauses:

valS,β({x/s} α) = valS,β′(α)

where β′ = β
valS,β(s)
x and α ∈ TerA ∪ ForA ∪ UpdA

valS,β(non-rec(u, f, t̄)) = I ′〈f, valS,β(t̄)〉

where S = (U, <, I) and I ′ = I ⊕ valS,β(u)

valS,β(in-dom(f, t̄, u)) = tt iff valS,β(u)〈f, valS,β(t̄)〉 6= ⊥

valS,β(reject(u1, u2)) = {(loc 7→ a) ∈ valS,β(u1) | valS,β(u2)(loc) = ⊥}

The difference between non-recursive application non-rec(u, f, t̄) and ordi-
nary application {u} f(t̄) is that the subterms t̄ are in the first case evaluated
in the unmodified algebra, whereas in the latter case the algebra is first updated
by u. Formally, we have {u} f(t̄) ≡ non-rec(u, f, {u} t̄). The non-recursive op-
erator enables us to separate the syntactic propagation of updates to subterms
and subformulas from the syntactic evaluation of updates.

The actual syntactic application of updates is described by the rewriting
rules in Table 2. Soundness and completeness of the rules is stated in Sect. 8.

7 Alternatively, one could also give a purely syntactic characterisation in terms of
recursively defined functions. For reasoning about correctness and for gaining an
intuition of what is happening, however, we believe that a separation of syntax and
semantics is beneficial.
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6 Application of Substitutions by Rewriting

Table 3 contains rewriting rules that apply substitutions syntactically, which
follows the idea of explicit substitutions [8]. The system essentially performs
pattern matching and distinguishes the different constructors that can occur
after a substitution. No rules exist for the cases substitution and update appli-
cation. Permuting substitutions with update application is not directly possible,
which can be seen for

{x/f(a)} {f(a) := b} x

in which an update modifies the meaning of terms that turn up in the sub-
stitution. This problem is related to variable capture (when passing binders),
but because updates can also assign non-nullary function symbols, avoidance of
capture by means of renaming is more intricate. Instead, in the case above we
delay the application of the substitution until the update has been eliminated
by rewriting.

When using updates in a logic like dynamic logic, it is common that updates
cannot be eliminated completely, e.g. updates in front of programs (see Sect. 2).
This implies that also substitutions cannot be eliminated in certain cases. Then,
the substitution either has to be kept, or has to be realised by other means like
equations.

7 Sequentiality and Application of Updates to Updates

We extend the basic version of updates from Sect. 3 a second time and intro-
duce sequential composition. Sequentiality already occurs when applications of
updates are nested, for instance in an expression {u1} {u2} α for a term or up-
date α. It seems natural to make an operator for sequential composition compat-
ible with nesting of updates: {u1} {u2} α ≡ {u1 ; u2} α. Sequential composition
of this kind can be reduced to parallel composition by extending the update ap-
plication operator to updates themselves, i.e., by considering updates {u1} u2.

Definition 8. We define the sets TerAS, ForAS and UpdAS of terms, formulas
and updates as in Def. 7, but with two further constructors:

UpdAS ::= · · · ||UpdAS ; UpdAS || {UpdAS} UpdAS

Again, the evaluation function is extended to TerAS , ForAS and UpdAS by adding
two clauses (in both cases S ′ = S ⊕ valS,β(u1)):

valS,β(u1 ; u2) = valS,β(u1) ⊕ valS′,β(u2), valS,β({u1} u2) = valS′,β(u2)

The second clause resembles the semantics of update application to terms and
formulas. The first clause is very similar to the evaluation of parallel updates,
with the only difference that the right update u2 is evaluated in the structure S ′

updated by u1. Intuitively, with parallel composition the effect of u1 is invisible
to u2 (and vice versa), whereas sequential composition carries out u1 before
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Table 3. Rewriting Rules for the Application of Substitutions

{x/s} x → s (R27)

{x/s} y → y (x 6= y, y ∈ Var ) (R28)

{x/s} f(t̄) → f({x/s} t̄) (R29)

{x/s}
if φ then t1

else t2
→

if {x/s} φ then {x/s} t1
else {x/s} t2

(R30)

{x/s} min x. φ → min x. φ (R31)

{x/s} min y. φ → min y. {x/s} φ (x 6= y, y 6∈ fv(s)) (R32)

{x/s} lit → lit (lit ∈ {true , false}) (R33)

{x/s} (φ1 ∗ φ2) → {x/s} φ1 ∗ {x/s} φ2 (∗ ∈ {∧,∨}) (R34)

{x/s} ¬φ → ¬{x/s} φ (R35)

{x/s} Qx. φ → Q x.φ (Q ∈ {∀, ∃}) (R36)

{x/s} Qy. φ → Q y. {x/s} φ (Q ∈ {∀, ∃}, x 6= y, y 6∈ fv(s))
(R37)

{x/s} (t1 ∗ t2) → {x/s} t1 ∗ {x/s} t2 (∗ ∈ {
.
=,

.
<}) (R38)

{x/s} skip → skip (R39)

{x/s} (f(r̄) := t) → f({x/s} r̄) := {x/s} t (R40)

{x/s} (u1 | u2) → {x/s} u1 | {x/s} u2 (R41)

{x/s} if φ {u} → if {x/s} φ {{x/s} u} (R42)

{x/s} for x {u} → for x {u} (R43)

{x/s} for y {u} → for y {{x/s} u} (x 6= y, y 6∈ fv(s)) (R44)

Table 4. Rewriting Rules for Sequential Composition

u1 ; u2 → u1 | {u1} u2 (R45)

{u} skip → skip (R46)

{u} (f(s̄) := t) → f({u} s̄) := {u} t (R47)

{u} (u1 | u2) → {u} u1 | {u} u2 (R48)

{u}
`

if φ {u1}
´

→ if {u} φ {{u} u1} (R49)

{u} (for x {u1}) → for x {{u} u1} (x 6∈ fv(u)) (R50)
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u2. This directly leads to the equivalence u1 ; u2 ≡ u1 | {u1} u2 that makes it
possible to eliminate sequentiality. The complete system of rewriting rules is
given in Table 4.

The relation ≡ from Def. 6 can be extended to TerAS , ForAS and UpdAS :

Lemma 2. Equivalence ≡ of terms, formulas and updates is a congruence re-
lation for all constructors given in Def. 1, 7 and 8.

Example 2. We continue Example 1 and assume the same vocabulary/algebra.

a := 1 ; f(a) := 2 ≡ a := 1 | f(1) := 2

valS,β(a := 1 ; f(a) := 2) = {〈a〉 7→ 1, 〈f, (1)〉 7→ 2}

valS,β(a := 1 ; (a := 3 | f(a) := 2)) = {〈a〉 7→ 3, 〈f, (1)〉 7→ 2}

We normalise the update in the second line using the given rewriting rules:

a := 1 ; (a := 3 | f(a) := 2)

(R45) → a := 1 | {a := 1} (a := 3 | f(a) := 2)

(R48) → a := 1 | ({a := 1} a := 3 | {a := 1} f(a) := 2)

∗(R47) → a := 1 | (a := {a := 1} 3 | f({a := 1} a) := {a := 1} 2)

∗(R2), ∗(R12) → a := 1 | (a := 3 | f(non-rec(a := 1, a, ())) := 2)

(R11) → a := 1 | (a := 3 | f(if true then 1 else a) := 2)

The last expression can be simplified further using rules for conditional terms,
which are, however, beyond the scope of this paper. Further, using (R54) in
Table 5, it is possible to eliminate the assignment a := 1, which is overridden by
a := 3.

8 Soundness and Completeness of Update Application

The following two lemmas state that the rewriting rules from Sect. 5, 6 and 7
are sound and complete. Both lemmas have been proven using the Isabelle/HOL
tool. The first and more important result is that rewriting does not change
the value of terms, formulas or updates, i.e., that rewriting is an equivalence
transformation:

Lemma 3. The rules of Tables 2, 3 and 4 are sound: if α → α′ then α ≡ α′.

The second lemma characterises the form of terms, formulas or updates to
which no further rewriting rules are applicable. Knowing that some rule is ap-
plicable as long as the update application operator, substitutions, any of the
“helper” constructors non-rec, in-dom, reject, or the sequential composition
operator occur in an expression ensures that no cases have been left out:

Lemma 4. If an expression α ∈ TerAS ∪ ForAS ∪ UpdAS is irreducible (up to
bound renaming) concerning the rules of Tables 2, 3 and 4, then α will not
contain the operators non-rec, in-dom or reject or sequentially composed
updates, i.e., α ∈ Ter ∪ For ∪ Upd. Further, α does not contain any update ap-
plications or substitution applications.
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9 Modelling Stack and Heap Structures

The memory of imperative and object-oriented programs can be modelled as a
well-ordered algebra by choosing appropriate vocabularies Σ. By updating the
values of function symbols, the memory contents can then be defined and mod-
ified symbolically. Compared to a more explicit encoding of program states as
individuals (for instance, elements of a datatype), directly representing memory
using a first-order vocabulary leads to very readable formulas that are in par-
ticular suited for interactive proof systems. The downside of this representation
is that the possibilities of meta-reasoning about the semantics of a language are
limited.

In the whole section, we assume that the universe for evaluating updates are
the natural numbers

�
, and that the standard well-ordering < is used (as in

Example 1). A more realistic application would, of course, require a typed logic
and to model the datatypes of programming languages properly. For this section,
it shall suffice to treat both data and addresses/pointers as natural numbers.

Variables: The simplest way to store data in programs is the usage of global
variables, which can be seen as constants g, h, i, . . . ∈ Σ when representing pro-
gram memory using well-ordered algebras (α(g) = α(h) = · · · = 0). Assignments
are naturally performed through updates g := t. Expanding a sequential update
into a parallel update yields a representation of the post-state by describing the
post-values of all modified variables in terms of the pre-values:8

gswap = i := g ; g := h ; h := i ≡ g := h | h := g | i := g

Local Variables: Although it is never necessary to use temporary or local vari-
ables in updates, the visibility of assignments in updates can be restricted. When
an update is expanded into its parallel representation, such “local variables” will
no longer turn up as left-hand sides of assignments. The helper variable i that is
used in the definition of gswap, for instance, becomes unnecessary in the parallel
representation: here, the assignment i := g could be removed without changing
the effect of the update on the remaining variables g, h. More generally, we can
use the operation reject (from Def. 7 in Sect. 11), which can be carried out by
purely syntactic means, for hiding variables.

i := 3 ; reject(gswap , i := 0) ≡ i := 3 ; (g := h | h := g)

≡ g := h | h := g | i := 3

i := 3 ; reject(gswap , i := 0 | g := 0) ≡ h := g | i := 3

Effectively, the application of reject turns i or i, g into local variables of gswap .
The right-hand side of the assignments i := 0 and g := 0 used in the expressions
does not matter.
8 We leave out parentheses because both parallel and sequential composition are as-

sociative, see (R52) and (R53) in Table 5.
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Explicit Stack: We can also model local variables l, m, n . . . ∈ Σ more explicitly
by introducing a stack. Therefore, we represent the variables as unary functions
(α(l) = α(m) = · · · = 1) and give them a stack address (a natural number) as
argument. We also need a stack pointer sp ∈ Σ that, in turn, is a constant
(α(sp) = 0) that is increased when entering a “procedure” and decreased when
exiting:9

swap(g, h) = sp := sp + 1 ; l(sp) := g ; g := h ; h := l(sp) ; sp := sp − 1

≡ � g := h | h := g | l(sp + 1) := g

Again, we might want to restrict the visibility of assignments to local variables:

reject(swap(g, h), for x {if sp
.
< x {l(x) := 0}}) ≡ � g := h | h := g

The following formula characterises swap. Simply applying the updates will ren-
der the formula trivially valid:

∀x. ∀y. {g := x | h := y} {swap(g, h)} (g
.
= y ∧ h

.
= x)

≡ ∀x. ∀y. (y
.
= y ∧ x

.
= x) ≡ true

Classes and Attributes: Also the individual objects of a class can be distin-
guished using addresses (natural numbers). Instance attributes of a class C are
then unary functions aC , bC . . . ∈ Σ (with α(aC) = α(bC) = · · · = 1) that take
an address as argument. As an example, we consider again the class List repre-
senting doubly-linked lists from Sect. 2 (with attributes next , prev , val ∈ Σ). The
following two updates describe the setup of singleton lists (that hold a value v)
and the concatenation of two lists (where one list ends with the object e and the
second one begins with the object b):

setup(o, v) = o.prev := nil | o.val := v | o.next := nil

cat(e, b) = e.next := b | b.prev := e

(we assume that nil ∈ Σ denotes invalid addresses and the beginning and end
of lists). Lists can then be created and modified as follows: (init as in Sect. 2)

init ≡ setup(a, c) ; setup(b, 2) ; cat(a, b) ; a.next.val := d

≡ a.prev := nil | b.next := nil | a.next := b | b.prev := a |

a.val := c | b.val := d

seq = for x {if x
.
< n + 1 {setup(x, x)}} ; for x {if x

.
< n {cat(x, x + 1)}}

≡ � 0.prev := nil | n.next := nil | for x {if x
.
< n + 1 {x.val := x}} |

for x {if x
.
< n {x.next := x + 1}} |

for x {if x
.
< n {(x + 1).prev := x}}

9 In this section, we write u1 ≡ � u2 for updates that have the same value over algebras
( � , <, I), provided that I interprets the functions +, − and literals as is common.
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Properties about the lists can again be proven by applying the updates and
performing first-order reasoning:

∀x. (¬x
.
< n ∨ {seq} x.next .prev

.
= x) ≡ � ∀x. (¬x

.
< n ∨ x

.
= x) ≡ true

Object Allocation: Updates cannot add or remove individuals from a universe
(constant-domain semantics). In modal logic, the usual way to simulate changing
universes is to introduce a predicate that distinguishes between existing and non-
existing individuals. Likewise, for our heap model “implicit” attributes createdC

can be defined that, for instance, have value 1 for existing and 0 for non-existing
objects of a class C. An initial state in which no objects are allocated can be
reached through the update for x {x.createdC := 0}. We write an allocator for
list nodes as follows:10

alloc(o, v) = o := min i. (i.createdList

.
= 0) ;

(

o.createdList := 1 | setup(o, v)
)

Note, that allocating objects in parallel using this method will produce clashes,
because parallel updates cannot observe each other’s effects. When running in
parallel, alloc(a, 1) and alloc(b, 2) will deterministically allocate the same object:

alloc(a, 1) | alloc(b, 2) ≡ alloc(b, 2) ; a := b 6≡ alloc(a, 1) ; alloc(b, 2)

Arrays: Arrays in a Java-like language behave much like objects of classes,
with the difference that arrays provide numbered cells instead of attributes.
We can model arrays be introducing a binary access function ar ∈ Σ and a
unary function len ∈ Σ telling the length of arrays (α(ar ) = 2 and α(len) = 1).
Array allocation can be treated just like allocation of objects through an implicit
attribute createdar . Given this vocabulary, we can allocate an array of length n
and fill it with numbers 0, . . . , n − 1: (we write o[x] instead of ar(o, x))

allocar (o, n) = o := min i. (i.createdar

.
= 0) ;

(

o.createdar := 1 | o.len := n
)

seqar = allocar (o, n) ; for x {if x
.
< o.len {o[x] := x}}

10 Symbolic Execution in Dynamic Logic Revisited

As shown in Sect. 2, during symbolic execution, updates can represent a certain
prefix (or path) of a program, whereas the suffix that remains to be executed is
given in the original language. In order to use updates for symbolic execution,
first of all a suitable representation of the program states using a first-order
vocabulary and algebras (along the lines of Sect. 9) has to be chosen. Rewriting
rules then define the semantics of program features in terms of updates and

10 For practical purposes, it is reasonable to have more book-keeping about allocated
objects than shown here. One approach is to introduce variables nextToCreateC and
to allocate objects sequentially.
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of connectives of first-order logic. This approach has been used to implement
symbolic execution for the “real-world” language JavaCard [9]. Examples for
the rewriting rules are:11

〈〉 φ  φ, 〈s = t; α〉 φ  {s := t} 〈α〉 φ

〈if (b) β1; else β2; α〉 φ  (b ∧ 〈β1; α〉 φ) ∨ (¬b ∧ 〈β2; α〉 φ)

It is important to note that updates are not intended as an intermediate repre-
sentation for complete programs: the focus is on handling the sequential parts.
For reasoning about general loops or recursion, techniques like induction or in-
variants are still necessary. It is, nevertheless, possible to translate certain loops
directly to an update [10]. An example are many array operations in Java with
unbounded runtime:12

〈System.arrayCopy(ar1, o1, ar2, o2, n)〉 φ

 {for x {if ¬x
.
< o2 ∧ x

.
< o2 + n {ar2[x] := ar1[x − o2 + o1]}}} φ

Compared to a declarative specification of arrayCopy using a post-condition
that contains a universally quantified formula, the imperative update can be
applied to formulas or terms like a substitution. We consider updates as advan-
tageous both for interactive and automated reasoning: the program structure is
preserved, and unnecessary non-determinism in a derivation is avoided.

A characteristic of imperative programs is that memory locations can be
assigned to/overwritten multiple times. After elimination of sequential compo-
sition, overwritten locations occur as clashes in updates. An example is update
init from Sect. 2 and 9, which contains potential clashes because of aliasing: for
a

.
= b, the expressions a.val and b.val denote the same location. Due to last-win

semantics, it is not necessary to distinguish the possible cases when turning se-
quential composition into parallel composition. Only when applying the update,
as in the expression co ′ in Sect. 2, the case a

.
= b has to be handled explicitly.

Well-ordered semantics enables an implicit handling of output dependencies
in loops (different iterations assign to the same locations) in a similar way [10].
A simple example is: (e(i) is a side-effect free, possibly non-injective expression)

〈while (¬i
.
= 0) {i = i − 1; a[e(i)] = i;}〉 φ

 {i := 0 | for x {if x
.
< i {a[e(x)] := x}}} φ

11 Laws for Update Simplification

Sect. 9 demonstrates how updates can be simplified and written as parallel com-
position of assignments. More formally, we can extend Sect. 5 and state that,

11 s, t, b have to be free of side-effects. It general, it will also be necessary to define a
translation of side-effect free program expressions into terms.

12 For sake of clarity, the example ignores the diverse errors that can occur when calling
arrayCopy, for instance for ar1

.
= ar2.
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Table 5. Laws for Commuting and Distributing Update Connectives

For α ∈ TerAS ∪ ForAS ∪ UpdAS:

{u1} {u2} α ≡ {u1 ; u2} α (R51)

u1 | (u2 | u3) ≡ (u1 | u2) | u3 (R52)

u1 ; (u2 ; u3) ≡ (u1 ; u2) ; u3 (R53)

u1 | u2 ≡ reject(u1, u2) | u2 (R54)

u1 | u2 ≡ u2 | reject(u1, u2) (R55)

u ≡ u | if φ {u} (R56)

u1 ≡ u1 | reject(u1, u2) (u2 arbitrary) (R57)

if φ {u1 | u2} ≡ if φ {u1} | if φ {u2} (R58)

if φ1 {if φ2 {u}} ≡ if φ1 ∧ φ2 {u} (R59)

for x {if φ {u}} ≡ if φ {for x {u}} (x 6∈ fv(φ)) (R60)

for x {if φ {u}} ≡ if ∃x. φ {u} (x 6∈ fv(u)) (R61)

for x {u1 | u2} ≡ for x {u1} | u2 (x 6∈ fv(u2)) (R62)

For u = for z {if z
.
< x {{x/z} u1}} and z 6= x, z 6∈ fv(u1):

for x {u1} ≡ for x {reject(u1, u)} (R63)

for x {u1 | u2} ≡ for x {u1} | for x {reject(u2, u)} (R64)

For u = for z {if z
.
< x {{x/z} for y {u1}}} and |{x, y, z}| = 3, z 6∈ fv(u1):

for x {for y {u1}} ≡ for y {for x {reject(u1, u)}} (R65)

given an arbitrary update u, there will always be an equivalent update u′ ≡ u
of the following shape: (in which φi, si, ti do not contain further updates)

for x1,1 {for x1,2 {for · · · {if φ1 {s1 := t1}}}}
| · · ·
| for xk,1 {for xk,2 {for · · · {if φk {sk := tk}}}}

(1)

It is usually advantageous to establish this shape: (i) Obvious clashes, like in the
update g := 1 | g := 2, can easily be eliminated. (ii) The update can easily be
read and directly tells about the values of variables or heap contents. (iii) When
applying updates syntactically using the rewriting system of Sect. 5, this form
is more efficient than most other shapes, because it supports the search for
matching assignments. (iv) It is possible to define more specialised and efficient
rewriting rules for update application (than the ones given in Sect. 5). This has
been done for the implementation of updates in KeY.

Table 5 gives, besides others, identities that enable to establish form (1) by
turning sequential composition into parallel composition, distributing if and
for through parallel composition and commuting if and for. Another impor-
tant application of the identities is the optimisation of parallel composition,
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Table 6. Simplification Rules for Updates based on Neutral and Extremal Elements

if φ {skip} → skip (R66)

if false {u} → skip (R67)

if true {u} → u (R68)

for x {skip} → skip (R69)

for x {u} → u (x 6∈ fv(u)) (R70)

skip | u → u (R71)

u | skip → u (R72)

skip ; u → u (R73)

u ; skip → u (R74)

which involves ordering updates ((R52), (R55)) and removing updates that are
overridden by other updates ((R54), see Sect. 2). Table 6 contains a set of rewrit-
ing rules for eliminating neutral or extremal elements. The soundness of all rules
and identities, based on the semantics of Sect. 4, has been proven using the
Isabelle/HOL proof assistant.

Lemma 5. The rules of Table 6 are correct: if α → α′ then α ≡ α′.

For formulating the transformation rules, we need a further operator from
Def. 7: the expression reject(u1, u2) denotes an update that carries out exactly
those assignments of u1 that do not define locations that are also assigned to
by u2. This enables us to make updates disjoint, i.e., to prevent updates from
assigning to the same locations, which is often a premise for permuting updates.

12 Normalisation and Equivalence Modulo Definedness

The identities given in Sect. 11 are sufficient for turning updates into shape (1).
In the implementation of updates in KeY, this kind of rewriting13 is performed
immediately whenever updates occur, and updates are stored or shown only in
shape (1). Often, this is already enough for making equivalent updates syntac-
tically equal. One of the counterexamples are the following equivalent updates
that are not rewritten to the same expression:

for x {if a
.
< x {u}} | for x {if ¬a

.
< x {u}} ≡ for x {u}

Because updates can contain arbitrary terms and formulas, we cannot hope for
a general procedure that decides the equivalence of two updates or that estab-
lishes a real normal form. On the other hand, reasoning about the equivalence
of updates is not more difficult than reasoning about the equivalence of terms
without updates (which can contain formulas, however, because of the construc-
tors min x. φ and if φ then t1 else t2). We describe a procedure that turns every
update u into an equivalent update

for x1,1 {for x1,2 {for · · · {f1(x1,1, x1,2, . . .) := t1}}}
| · · ·
| for xk,1 {for xk,2 {for · · · {fk(xk,1, xk,2, . . .) := tk}}}

(2)

13 Application of (R51), (R52), (R58), (R59), (R60), (R64) from left to right, Table 6
as well as ordering sequences of parallel updates.
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Table 7. Compatibilities between ≡md and Update Operators

f(t̄) := f(t̄) ≡md skip (R75)

u1 ≡md u′

1 implies u1 | u2 ≡md u′

1 | u2 (R76)

u1 ≡md u′

1, u2 ≡md u′

2 implies u1 ; u2 ≡md u′

1 ; u′

2 (R77)

u ≡md u′ implies if φ {u} ≡md if φ {u′} (R78)

u ≡md skip implies for x {u} ≡md skip (R79)

For α ∈ TerAS ∪ ForAS ∪ UpdAS:

u ≡md u′ implies {u} α ≡ {u′} α (R80)

where the set {f1, . . . , fk} contains all function symbols that are assigned to by
u (but possibly more symbols). Establishing a normal form is then reduced to
normalising the terms t1, . . . , tk. We need a bit of equipment:

Assignments vs. Modifications: Given a well-ordered algebra S = (U, <, I),
there are three ways in which a partial interpretation J (for instance, the value
of an update) can behave at a location loc = 〈f, ā〉: (i) J can be undefined at
point loc (i.e., J(loc) = ⊥), (ii) J can agree with the interpretation I at point loc
(i.e., J(loc) = I(loc) 6= ⊥), which means that it assigns to the location without
changing the stored value, or (iii) J can assign a value to loc that is different from
the value assigned by the interpretation I (i.e., ⊥ 6= J(loc) 6= I(loc)). Although
the behaviours (i) and (ii) mostly cannot be distinguished when working with
updates, the relation ≡ is fine enough for separating the two cases. For arbitrary
terms, formulas or updates α, we have:

{a := a} α ≡ {skip} α but a := a 6≡ skip

We define a coarser equivalence relation that identifies the cases (i) and (ii):

Definition 9. Two updates u1, u2 ∈ UpdAS are called equivalent modulo de-
finedness, u1 ≡md u2, if for all well-ordered algebras S = (U, <, I) and all vari-
able assignments β over S

I ⊕ valS,β(u1) = I ⊕ valS,β(u2)

Two examples for updates that are equivalent modulo definedness are:

a := a ≡md skip, (for x {f(x) := f(x)} | f(a) := b) ≡md f(a) := b

It has to be stressed, however, that ≡md is not a congruence relation for all of
the update constructors. The critical constructors are parallel composition and
quantification:

a := a ≡md skip but a := b | a := a 6≡md a := b | skip

More generally, Table 7 contains a number of implications that enable to derive
equivalence modulo definedness syntactically.
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Normalisation of Updates: Surprisingly, the notion of equivalence modulo
definedness allows to perform normalisation of updates u. By Table 7, we have:

v = for x1 {for x2 {for · · · {f(x1, x2, . . .) := f(x1, x2, . . .)}}} ≡md skip

for arbitrary function symbols f . Because equivalence modulo definedness is a
congruence relation for sequential composition, assignments to f in the update u
can then be “split off”:

u

(R74) ≡ u ; skip

(R77) ≡md u ; v

(R45) ≡ u | {u} v

(R54) ≡ reject(u, {u} v) | {u} v

Simplifying the update {u} v by applying rewriting rules will turn the right-hand
side of the assignment in v into an explicit representation of the values that u
assigns to f . In contrast, simplifying reject(u, {u} v) eliminates all assignments
to the symbol f from the update u. By iterating the splitting procedure (or by
choosing an update v that contains more assignments) the normalform (2) will
eventually be established. The resulting update u′ is equivalent to the original
update u modulo definedness, which means that u and u′ have the same effect
when being applied to terms, formulas or updates (R80).

13 Related Work

Symbolic execution of programs is introduced in [11] in form of a symbolic in-
terpreter for imperative, deterministic programs. The considered programming
language only provides integer variables, although arrays are shortly mentioned.
Execution states of the interpreter consist of a symbolic variable assignment (a
mapping from program variables to polynomials over the initial variable con-
tents) and a path condition (a quantifier-free formula over the initial variable
contents).

There are different approaches to extend symbolic execution to heap struc-
tures and arrays, two of them are: In [12], an explicit model of the heap is main-
tained during execution of the program, which is extended each time a variable
or attribute is accessed the first time. Eager case distinctions are performed in
order to cover different initial shapes of the heap. A more implicit representation
is achieved by describing the state of the heap as a formula, which, for instance,
is done in [13] for separation logic. Because updates describe heap modifications,
i.e., not necessarily the complete heap state, they can be seen as an orthogonal
approach and could be combined with both methods.

A theory that is very similar to updates are abstract state machines (ASMs)
[14]. While there are different versions of ASMs, all update constructors of this
paper can in similar form also be found in [15]. The main difference is the notion
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of “consistent updates” that exists for ASMs and that demands clash-freeness. In
contrast, the present paper describes a semantics in which clashes are resolved by
a last-win strategy or a well-ordering strategy, which we consider as better suited
for representing imperative programs. This topic is discussed in Sect. 10 (and also
in [16]): intuitively, clashes in updates are caused by multiple assignments to the
same location in an imperative program. Because it is generally not decidable
whether clashes occur—due to aliasing—case distinctions can be postponed by
resolving clashes deterministically.

Substitutions in B [17] have character similar to updates. Like ASMs, they
are used for modelling systems and are a complete programming language that
also provides loops and non-determinism. Updates are deliberately kept less
expressive, focussing on automated simplification and application.

The guarded command language [18] is used as intermediate language in the
verification systems ESC/Java2 [19] and Boogie [20]. In contrast to updates,
guarded commands are used to represent complete object-oriented programs—
which requires concepts like loops or non-determinism—and are eliminated using
wp-calculus.

Many proof assistants, for instance Isabelle/HOL [3] or PVS [21], provide
notations for function updates. The main differences to the updates in the present
paper is that function updates are directly attached to functions, and, thus,
do not have a substitution-like character. At the same time, function updates
usually provide fewer constructors and are less expressive.

Explicit substitutions [8], i.e., substitutions that are applied in multiple steps
and in a delayed manner, are a refinement of λ-calculi. Explicit substitutions are
a basis for programming language features like closures, but are also relevant
when studying logics. The step-wise application of explicit substitution is similar
to the application of updates and substitutions in the present paper. Updates go
beyond explicit substitutions concerning the provided constructors, and are given
an independent semantics in the style of an imperative programming language.
A further difference is that updates are designed as a component of first-order
logic, whereas the style in which explicit substitutions can be used to define or
to modify functions appears more natural in higher-order logics.

In the context of the KeY system, updates turn up in [9] for the first time,
where the only update constructor are assignments. Parallel updates are de-
scribed in [16, 22] for the first time, and have the same last-win semantics as in
this paper.

14 Conclusions and Future Work

The update language described in this paper has been implemented in the KeY
prover. Quantified updates, added most recently, have mostly improved the abil-
ity of the prover to handle arrays, as operations like arrayCopy (Sect. 10) can
now be specified and symbolically executed very efficiently. Compared to the
rules in Sect. 5 and 11 (which are more general), KeY also contains further opti-
misations for applying updates that have been found to be important in practice.
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An interesting step would be the combination of ordinary substitutions and
updates. This would require developing a concept of bound renaming for updates.
Another appealing improvement would be the possibility of non-deterministic
updates, which would allow to handle object creation (or, generally, under-
specification of language features) more naturally.
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Abstract. Program verification is concerned with proving that a pro-
gram is correct and adheres to a given specification. Testing a program,
in contrast, means to search for a witness that the program is incorrect.
In the present paper, we use a program logic for Java to prove the in-

correctness of programs. We show that this approach, carried out in a
sequent calculus for dynamic logic, creates a connection between calculi
and proof procedures for program verification and test data generation
procedures. In comparison, starting with a program logic enables to find
more general and more complicated counterexamples for the correctness
of programs.

1 Introduction

Testing and program verification are techniques to ensure that programs behave
correctly. The two approaches start with complementary assumptions: when we
try to verify correctness, we implicitly expect that a program is correct and want
to confirm this by conducting a proof. Testing, in contrast, expects incorrectness
and searches for a witness (or counterexample for correctness):

“Find program inputs for which something bad happens.”

In the present paper, we want to reformulate this endeavour and instead write
it as an existentially quantified statement:

“There are program inputs for which something bad happens.” (1)

Written like this, it becomes apparent that we can see testing as a proof proce-
dure that attempts to eliminate the quantifier in statements of form (1). When
considering functional properties, many program logics that are used for veri-
fication are general enough to formalise (1), which entails that calculi for such
program logics can in fact be identified as testing procedures.

The present paper discusses how the statement (1), talking about a Java
program and a formal specification of safety-properties, can be formalised in
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dynamic logic for Java [1, 2]. Through the usage of algebraic datatypes, this
formalisation can be carried out without leaving first-order dynamic logic. Sub-
sequently, we use a sequent calculus for automatic reasoning about the resulting
formulas. The component of the calculus that is most essential in this setting
is quantifier elimination. Depending on the way in which existential quanti-
fiers are eliminated—by substituting ground terms, or by using metavariable
techniques—we either obtain proof procedures that much resemble automated
white-box test generation methods, or we arrive at procedures that can find more
general and more complicated solutions (program inputs) of (1), but that are
less efficient for “obvious” bugs. We believe that this viewpoint to incorrectness
proofs can both lead to a better understanding of testing and to more powerful
methods for showing that programs are incorrect.

Organisation of the Paper Sect. 2 introduces dynamic logic for Java and describes
how (1) can be formalised. In Sect. 3, we show how different versions of a sequent
calculus for dynamic logic can be used to reason about (1). Sect. 4 discusses how
solutions of (1) can be represented. Sect. 5 discusses related work, and Sect. 6
gives future work and concludes the paper.

Running Example: Erroneous List Implementation The Java program shown in
Fig. 1 is used as example in the whole paper. It is interesting for our purposes
because it operates on a heap datastructure and contains unbounded loops,
although it is not difficult to spot the bug in method delete.

2 Formalisation of the Problem in Dynamic Logic

In the scope of this paper, the only “bad things” that we want to detect are
violated post-conditions of programs. Arbitrary broken safety-properties (like
assertions) can be reduced to this problem, whereas the violation of liveness-
properties (like looping programs) falls in a different class and the techniques
presented here are not directly applicable. This section describes how the state-
ment that we want to prove can be formulated in dynamic logic:

There is a pre-state—possibly subject to pre-conditions—such that the
program at hand violates given post-conditions.

(2)

Dynamic Logic First-order dynamic logic (DL) [1] is a multi-modal extension of
first-order predicate logic in which modal operators are labelled with programs.
There are primarily two kinds of modal operators that are dual to each other: a
diamond formula 〈α〉φ expresses that φ holds in at least one final state of pro-
gram α. Box formulae can be regarded as abbreviations [α]φ ≡ ¬〈α〉¬φ as usual.
The DL formulae that probably appear most often have the form φ→ 〈α〉ψ and
state, for a deterministic program α, the total correctness of α concerning a
precondition φ and a postcondition ψ. In this paper, we will only use dynamic
logic for Java [2] (JavaDL) and assume that α is a list of Java statements.
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���������	�
������
�
 IntList {
������������� ListNode head;
���������	��������� add ( ����� n) { ... }

/*@

@ ������������������������ 	���	!����"�����

@ ���"
�������
 !contains(n);

@*/
���������	��������� delete( ����� n) {

ListNode cur = head, prev = head;
#�!$�	��� (cur != ������� ) {
��% (cur.val == n) prev.next = cur.next;
����
	� prev = cur;

cur = cur.next;

}

}

���������	� /*@ ������� @*/ �������	����� contains( ����� n) {

ListNode temp = head;
#�!$�	��� (temp != ������� ) {
��% (temp.val == n) �����������&������� ;
temp = temp.next;

}
�����������&%�����
�� ;

}

}

������
�
 ListNode {
���������	�'����� val;
���������	� ListNode next;

}

IntList

+add(n:int)

+delete(n:int)

+contains(n:int)

ListNode
+val: int

head0..1

next0..1

Fig. 1. The running example, a simple implementation of singly-linked lists, annotated
with JML [3] constraints. We concentrate on the method delete for removing all
elements with a certain value, which contains bugs.

Updates JavaDL features a notation for updating functions in a substitution-like
style [4], which is primarily useful because it allows for a natural representation
of symbolic execution. For our purposes, updates can be seen as a simplistic
programming language and are defined by the grammar:

Upd ::= skip || f(s1, . . . , sn) := t || Upd |Upd || if φ {Upd} || for x {Upd}

in which s1, . . . , sn, t range over terms, f over function symbols, φ over formulae
and x over variables. The update constructors denote effect-less updates, assign-
ments, parallel composition, guarded updates and quantified updates. Updates u
can be attached to terms and formulae (like in {u} t) for changing the state in
which the expression is supposed to be evaluated:

{a := g(3)} f(a)  f(g(3)), {a := 3 | for x {f(x) := 2·x+1}} f(f(a))  15

As shown here, it is always possible to apply updates to terms and formulae like
a substitution, unless a formula contains further modal operators. In the latter
case, the application has to be delayed until the modal operator is eliminated.
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2.1 Heap Representation in Dynamic Logic for Java

Reasoning in JavaDL always takes place in the context of a system of Java
classes, which is supposed to be free of compile-time-errors. From this context,
a vocabulary of sorts and function symbols is derived that represents variables
and the heap of the program in question [2].

Most importantly, objects of classes are in JavaDL identified with natural
numbers. For each class C, a sort with the same name and a (injective) function
C.get : nat → C are introduced. C.get(i) is the ith object of class C (i is the in-
dex or “address”). For distinct classes C and D, C.get(i) and D.get(j) never are
the same object. Each sort C representing a class also contains a distinguished
individual denoted by null , which is used to represent undefined references. At-
tributes of type T of a class C are modelled by functions C → T . Instead of the
infix notation attr(o), we will mostly write o.attr for attribute accesses.

C can be seen as a reservoir containing both those objects that are already
created and those that can possibly be created later by a program: JavaDL uses
a constant-domain semantics in which modal operators never change the do-
mains of existing individuals. In order to distinguish existing and non-existing
objects, for each class C also a constant C.nextToCreate : nat is declared that
denotes the lowest index of a non-created object. All objects C.get(i) with
i < C.nextToCreate are created, all others are not.

For the program in Fig. 1, the vocabulary is as follows:

Sorts: Functions:
IntList ,ListNode , IntList .get : nat → IntList
int ,nat , . . . ListNode .get : nat → ListNode

IntList .nextToCreate : nat
ListNode .nextToCreate : nat
head : IntList → ListNode
next : ListNode → ListNode
val : ListNode → int

2.2 Formalising the Violation of Post-Conditions

We go back to (2). It is almost straightforward to formalise the part of (2) that
comes after the existential quantifier “there is a pre-state”:

¬
(

pre-conditions → 〈 statements 〉 post-conditions
)

(3)

Formula (3) is true if and only if the pre-conditions hold, the program fragment
does not terminate, or terminates and the post-conditions do not hold in the
final state.

Property (2) does not mention termination, which could be interpreted in
different ways. If in (3) the box operator [α]φ was used instead of a diamond,
we would also specify that the program has to terminate for the inputs that we
search for. JavaDL does, however, not distinguish between non-termination due



Proving Programs Incorrect using a Sequent Calculus for Java Dynamic Logic 119

to looping and abrupt termination due to exceptions (partial correctness seman-
tics). Because we, most likely, will consider abrupt termination as a violation of
the post-condition, the diamond operator appears more appropriate.

2.3 Quantification over Program States

In order to continue formalising (2), it is necessary to close the statement (3)
existentially and to add quantifiers that express “there is a pre-state”:

∃ pre-state. {pre-state} ¬
(

pre-conditions → 〈 statements 〉 post-conditions
)

(4)

Because state quantification is not directly possible in JavaDL, we use an up-
date {pre-state} to define the state in which (3) is to be evaluated. For a Java
program, the pre-state covers (i) variables that turn up in a program, and (ii) the
heap that the program operates on. Following Sect. 2.1, at a first glance this
turns out to be a second-order problem, because the heap is modelled by func-
tions like head , next , etc.3 A second glance reveals, fortunately, that a proper
Java program (and proper pre- and post-conditions)4 will only look at the val-
ues C.get(i).attr of attributes for i < C.nextToCreate : the state of non-existing
objects is irrelevant. Quantification of C.nextToCreate and the finite prefix

C.get(0).attr , C.get(1).attr , . . . , C.get(C.nextToCreate − 1).attr

can naturally be realised through algebraic datatypes, like through lists. Note,
that the number of quantified locations is finite, but unbounded.

Attributes of Primitive Types In the most direct case, the type of attr would be
int and the quantification as follows (other primitive Java types can be handled
in the same way):

∃ attrV : intList . {for x : nat {C.get(x).attr := attrV ↓x}} . . .

Apart from the actual quantifier, an update is used for copying the contents of
the list variable attrV to the attribute. The expression also contains an operator
for accessing lists [a0, . . . , an], which we define by

[a0, . . . , an]↓ i :=

{

ai for i ≤ n

0 otherwise
(i : nat)

The fact that the operator returns a default value (0, but any other value would
work equally well) for accesses outside of the list bounds simplifies the overall
treatment and basically renders the length of lists irrelevant.5

3 JavaDL does not provide higher-order quantification.
4 In the whole paper, we assume that pre- and post-conditions only talk about the

program state, and only about created objects.
5 Instead of lists, one could also talk about functions with finite support.
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Attributes of Reference Types The quantification is a bit more involved for at-
tributes attr of type D, where D is a reference type, e.g., a class: (i) attributes
can be undefined, i.e., have value null , (ii) attributes of created objects must
not point to non-created objects, and (iii) attributes of type D can also point
to objects of type D′, provided that D′ is a subtype of D. We capture these re-
quirements by overloading the function D.get . Assuming that D0 (= D), . . . , Dk

is an arbitrary, but fixed enumeration of D’s subtypes, we define:

D.get(s, i) :=

{

Ds.get(i) for i < Ds.nextToCreate, s ≤ k

null otherwise
(i, s : nat)

Apart from the object index i, we also pass D.get(s, i) the index s of the re-
quested subtype of D. The result of D.get(s, i) is either a created object (if i
and s are within their bounds Ds.nextToCreate and k) or null . With this defi-
nition, the quantification part for a reference attribute boils down to

∃ aS , aV : natList . {for x : nat {C.get(x).attr := D.get(aS ↓x, aV ↓x)}} . . .

In case of a class D that does not have proper subclasses, the list aS can of
course be left out (and the first argument of D.get can be set to 0).

Example We show the formalisation of (2) for the method delete in the pro-
gram of Fig. 1. Apart from the values of the attributes head , next and val , which
are treated as discussed above, one also has to quantify over the number of
created objects (IntList .nextToCreate and ListNode.nextToCreate), over the re-
ceiver o of the method invocation and over the argument n. o is assumed to
be either an arbitrary created object or null (IntList .get(0, oV )). The pre- and
post-conditions correspond to the JML specification: initially, o is not null , and
delete really removes the elements with value n.

∃ kIL, kLN , oV : nat . ∃nV : int . ∃ headV ,nextV : natList . ∃ valV : intList .

{IntList .nextToCreate := kIL | ListNode .nextToCreate := kLN }

{for x : nat {IntList .get(x).head := ListNode .get(0, head V ↓x)} |

for x : nat {ListNode.get(x).next := ListNode .get(0,nextV ↓x)} |

for x : nat {ListNode.get(x).val := valV ↓x} |

o := IntList .get(0, oV ) | n := nV }

¬
(

o 6= null → 〈 o.delete(n) 〉 〈 b = o.contains(n) 〉 b = FALSE
)

(5)

3 Constructing Proofs for Program Incorrectness

A Gentzen-style sequent calculus for JavaDL is introduced in [2], which has been
implemented in the KeY system [5] and is used by us as test-bed. Fig. 2 shows
a small selection of the rules. Relevant for us are the following groups of rules:
(i) rules for a sequent calculus for first-order predicate logic with metavariables
(the first 5 rules of Fig. 2), (ii) rules that implement symbolic execution [6] for
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Γ ` φ,∆ Γ ` ψ,∆

Γ ` φ ∧ ψ,∆
∧r

Γ, φ, ψ ` ∆

Γ, φ ∧ ψ ` ∆
∧l

Γ, φ ` ∆

Γ ` ¬φ,∆
¬r

Γ ` φ[x/f(X1, . . . , Xn)], ∆

Γ ` ∀x.φ,∆
∀r

(X1, . . . , Xn all
metavariables in φ)

Γ ` φ[x/X], ∃x.φ,∆

Γ ` ∃x.φ,∆
∃r

(X a fresh
metavariable)

Γ, {u} {r := l} 〈. . .〉φ ` ∆

Γ, {u} 〈r = l; . . .〉φ ` ∆
assign-l

(r, l side-effect-free)

Γ, {u} 〈α1; . . .〉φ, {u} b ` ∆
Γ, {u} 〈α2; . . .〉φ ` {u} b,∆

Γ, {u} 〈if (b) α1 else α2 . . .〉φ ` ∆
if-l

(b side-effect-free)

Fig. 2. Examples of (simplified) sequent calculus rules for JavaDL. In the last two
rules, the update u can also be empty (skip) and disappear.

Java, and (iii) rewriting rules for applying and simplifying updates (not shown
here, see [4]).

The fact that the calculus directly integrates symbolic execution—and covers
all important features of Java like dynamic object creation and exceptions—
is most central for us. When symbolically executing a program, the proof tree
resembles the symbolic execution tree of the program [6] and reflects the (feasible)
paths through the program. Branch predicates that describe, in terms of the pre-
state, when a certain path is taken are accumulated as formulae in a sequent.
JavaDL introduces such predicates for conditional statements, when unwinding
loops, or for statements that might raise exceptions. A simple example is the
following proof:

....
p+ 1 ≤ 0, p ≥ 0 `

{p := p+ 1} 〈〉p ≤ 0, p ≥ 0 `

〈p = p+ 1; 〉p ≤ 0, p ≥ 0 `
assign-l

....
−p ≤ 0 ` p ≥ 0

{p := −p} 〈〉p ≤ 0 ` p ≥ 0

〈p = −p; 〉p ≤ 0 ` p ≥ 0

〈if (p ≥ 0) p = p+ 1; else p = −p; 〉p ≤ 0 `
if-l

Symbolic execution and update application can usually be automated easily,
because in each proof situation only few rules are applicable, and because the
application order does not matter.

This section discusses how the sequent calculus can be used to prove formulae
(4). The first and essential task is always to eliminate the existential quantifiers,
i.e., to provide the programs inputs, which can be concrete or symbolic.6

6 Assuming that pre- and post-conditions only talk about the program state, it is
sufficient to apply ∃r once (and not multiple times) for each quantifier in ∃ pre-state ,
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We focus on and propose two methods for constructing proofs: the usage of
metavariables and depth-first search (Sect. 3.2) and the usage of metavariables
and backtracking-free search with constraints (Sect. 3.3). In our experiments,
we have concentrated on the latter method, because the implementation KeY
follows this paradigm. As a comparison, Sect. 3.1 shortly discusses how a ground
calculus would handle (4), which resembles common test generation techniques.

3.1 Using a Ground Proof Procedure

The simplest approach is ground reasoning, i.e., to not use metavariables. There-
fore, a ground version of ∃r can be used: (t is a term)

Γ ` φ[x/t], ∃x.φ,∆

Γ ` ∃x.φ,∆
∃rg

Equivalently, also the normal rule ∃r can be applied, immediately followed by
a substitution step that replaces the introduced metavariable X with a concrete
term t. For (4), the usage of rule ∃rg encompasses that a concrete pre-state has
to be chosen up-front that satisfies the pre-condition and makes the program
violate its post-condition. If we consider (5), for instance, we see that a proof
can be conducted with the following instantiations:

kIL kLN oV nV headV nextV valV
1 1 0 5 [0] [7] [5]

(6)

The instantiations express that the classes IntList and ListNode have one cre-
ated object each (kIL, kLN ), that the object IntList .get(0) receives the method
invocation (oV ) with argument 5 (nV ), that IntList .get(0).head points to the
object ListNode .get(0) (headV ), that ListNode .get(0).next is null (nextV , be-
cause of 7 ≥ kLN ), i.e., that the receiving list has only one element, and that
ListNode .get(0).val is 5 (valV ).

A ground proof of a formula (4) is the most specific description of an er-
roneous situation that is possible. For debugging purposes, this is both an ad-
vantage and a disadvantage: (i) it is possible to concretely follow a program
execution that leads to a failure, but (ii) the description does not distinguish
between those inputs (or input features) that are relevant for causing a failure
and those that are irrelevant. The disadvantage can partly be undone by look-
ing at more than one ground proof, and by searching for proofs with “minimal”
input data (e.g., [7]). Technically, the main advantage of a ground proof is that
program execution (and checking pre- and post-conditions) is most efficient for a
concrete pre-state. The difficulty, of course, it to find the right pre-state, which is
subject of techniques for automated test data generation. Common approaches
are the generation of random pre-states (e.g., [7]), or the usage of backtrack-
ing, symbolic execution and constraint techniques in order to optimise coverage
criteria and to reach the erroneous parts of a program (see, e.g., [8]).

because the validity of (4) only depends on the program fragment and the pre- and
post-conditions, not on the values of other symbols.
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∗
[P 7→ 2 ]

P + 1 > 3, P ≥ 0 `

{p := P + 1} 〈〉p > 3, p ≥ 0 `

{p := P} 〈p = p+ 1; 〉p > 3, P ≥ 0 `

∗
[P 7→ 2 ]

{p := P} 〈p = −p; 〉p > 3 ` P ≥ 0

{p := P} 〈if (p ≥ 0) p = p+ 1; else p = −p; 〉p > 3 `
if-l

` ¬{p := P} 〈if (p ≥ 0) p = p+ 1; else p = −p; 〉p > 3, . . .
¬r

` ∃ pV : int . {p := pV } ¬〈if (p ≥ 0) p = p+ 1; else p = −p; 〉p > 3
∃r

Fig. 3. Proof that a program violates its post-condition p > 3. The initial (quantified)
formula is derived as described in Sect. 2. The application of updates is not explicitly
shown in the proof.

3.2 Construction of Proofs using Metavariables and Backtracking

The most common technique for efficient automated proof search in tableau or se-
quent calculi are rigid metavariables (also called free variables) and backtracking
(depth-first search), for an overview see [9]. The rules shown in Fig. 2, together
with a global substitution rule that allows to substitute terms for metavariables
in a proof tree, implement a corresponding sequent calculus. Because, in par-
ticular, the substitution rule is destructive and a wrong decision can hinder the
subsequent proof construction, proof procedures usually carry out a depth-first
search with iterative deepening and backtrack when earlier rule applications
appear misleading.

The search space of a proof procedure can be seen as an and/or search tree:
(i) And-nodes occur when the proof branches, for instance when applying ∧r,
because each of the new proof goals has to be closed at some point. (ii) Or-nodes
occur when a decision has to be drawn about which rule to apply next, or about
a substitution that should be applied to a proof; in general, only one of the
possible steps can be taken.

Metavariables and backtracking can be used to prove formulae like (4). The
central difference to the ground approach is that metavariables can be introduced
as place-holders for the pre-state, which can later be refined and made concrete
by applying substitutions. A simple example is shown in Fig. 3, where the ini-
tial value of the variable p is represented by a metavariable P . After symbolic
execution of the program, it becomes apparent that the post-condition p > 3
can be violated in the left branch by substituting 2 for P . The right branch can
then be closed immediately, because this path of the program is not executed
for P = 2: the branch predicate P ≥ 0 allows to close the branch. Generally, the
composition of the substitutions that are applied to the proof can be seen as a
description of the pre-state that is searched for. A major difference to the ground
case is that a substitution also can describe classes of pre-states, because it is
not necessary that concrete terms are substituted for all metavariables.
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Branch Predicates Strictly speaking, the proof branching that is caused by the
rule if-l (or by similar rules for symbolic execution) falls into the “and-node”
category: all paths through the program have to be treated in the proof. The
situation differs, however, from the branches introduced by ∧r, because if-l

performs a cut (a case distinction) on the branch predicate {u} b. As the program
is executed with symbolic inputs (metavariables), it is possible to turn {u} b into
true or false (possibly into both, as one pleases), by applying substitutions and
choosing the pre-state appropriately. Coercing {u} b in this way will immediately
close one of the two branches.

There are, consequently, two principle ways to close (each of) the proof
branches after executing a conditional statement: (i) the program execution can
be continued until termination, and the pre-state can be chosen so that the post-
condition is violated, or (ii) one of the two branches can be closed by making
the branch predicate true or false , which means that the program execution is
simply forced not to take the represented path. Both cases can be seen in Fig. 3,
in which the same substitution P 7→ 2 leads to a violation of the post-condition
in the left branch and turns the branch predicate in the right branch into true.

Proof Strategy The proof construction consists of three parts: (i) pre-conditions
have to be proven, (ii) the program has to be executed symbolically in order
to find violations of the post-conditions, and (iii) it has to be ensured that the
program execution takes the right path by closing the remaining proof branches
with the help of branch predicates. These steps can be performed in different
orders, or also interleaved. Furthermore, it can in all phases be necessary to
backtrack, for instance when a violation of the post-conditions was found but
the pre-state does not satisfy the pre-condition, or if the path leading to the
failure is not feasible.

Example Formula (5) can be proven by choosing the following values, which
could be found using metavariables and backtracking:

kIL kLN oV nV headV nextV valV
1 1 0 NV [0, . . .] [7, . . .] [NV , . . .]

(7)

Comparing this solution to (6), the main difference is that no concrete value
has to be chosen for nV . It suffices to state that the value of nV coincides with
the first element of the list valV : when calling delete, the actual parameter
coincides with the first element of the receiving linked list. Likewise, the parts
of the pre-state that are described by lists do not have to be determined com-
pletely: the tail of lists can be left unspecified by applying substitutions like
VALV 7→ cons(NV ,VALtail ) (which is written as [NV , . . .] in the table). Sect. 4
discusses how the representation of solutions can further be generalised.

3.3 Construction of Proofs using Incremental Closure

There are alternatives to proof search based on backtracking: one idea is to work
with metavariables, but to delay the actual application of substitutions to the



Proving Programs Incorrect using a Sequent Calculus for Java Dynamic Logic 125

proof tree until a substitution has been found that closes all branches. The idea is
described in [10] and worked out in detail in [11]. While backtracking-free proof
search is, in principle, also possible when applying substitutions immediately, re-
moving this destructive operation vastly simplifies proving without backtracking.
Because KeY implements this technique, it is used in our experiments.

The approach of [11] works by explicitly enumerating and collecting, for
each of proof goals, the substitutions that would allow to close the branch.
Substitutions are represented as constraints, which are conjunctions of unifi-
cation conditions t1 ≡ t2. A generalisation is discussed in Sect. 4. For the ex-
ample in Fig. 3, the “solutions” of the left branch could be enumerated as
[P ≡ 2 ], [P ≡ 1 ], [P ≡ 0 ], [P ≡ −1 ], . . . , and the solutions of the right branch
as [P ≡ 0 ], [P ≡ 1 ], [P ≡ 2 ], . . . In this case, we would observe that, for in-
stance, the substitution represented by [P ≡ 0 ] closes the whole proof. Gener-
ally, the conjunction of the constraints for the different branches describes the
substitution that allows to close a proof (provided that it is consistent).

When proving formulae (4) using metavariables, a substitution (i.e., pre-
state) has to be found that simultaneously satisfies the pre-conditions, vio-
lates the post-conditions in one (or multiple) proof branches and invalidates
the branch predicates of all remaining proof branches. The constraint approach
searches for such a substitution by enumerating the solutions of all three in a
fair manner. In our experiments, we also used breadth-first exploration of the
execution tree of programs, which simply corresponds to a fair selection of proof
branches and formulae that rules are applied to. For formula (5), the method
could find the same solution (7) as the backtracking approach of Sect. 3.2.

Advantages Compared to backtracking, the main benefits of the constraint ap-
proach are that duplicated rule applications (due to removed parts of the proof
tree that might have to be re-constructed) are avoided, and that it is possible
to search for different solutions in parallel. Because large parts of the proofs in
question—the parts that involve symbolic execution—can be constructed algo-
rithmically and do not require search, the first point is particularly significant
here. The second point holds because the proof search does never commit to
one particular (partial) solution by applying a substitution. Constraints also
naturally lead to more powerful representations of classes of pre-states (Sect. 4).

Disadvantages Destructively applying substitutions has the effect of propagating
decisions that are made in one proof branch to the whole proof. While this is
obviously a bad strategy for wrong decisions, it is by far more efficient to verify
a substitution that leads to a solution (by applying it to the whole proof and by
closing the remaining proof branches) than to hope that the remaining branches
can independently come up with a compatible constraint. In Fig. 3, after applying
the substitution [P 7→ 2 ] that is found in the left branch, the only work left in
the right branch is to identify the inequation 2 ≥ 0 as valid. Finding a common
solution of P + 1 6> 3 and P ≥ 0 by enumerating partial solutions, in contrast,
is more naive and less efficient. One aspect of this problem is that unification
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constraints are not a suitable representation of solutions when arithmetic is
involved (Sect. 4).

3.4 A Hybrid Approach: Backtracking and Incremental Closure

Backtracking and non-destructive search using constraints do not exclude each
other. The constraint approach can be seen as a more fine-grained method for
generating substitution candidates: while the pure backtracking approach always
looks at a single goal when deriving substitutions, constraints allow to compare
the solutions that have been found for multiple goals. The number of goals that
can simultaneously be closed by one substitution, for instance, can be considered
as a measure for how reasonable the substitution is. Once a good substitution
candidate has been identified, it can also be applied to the proof destructively and
the proof search can continue focussing on this solution candidate. Because the
substitution could, nevertheless, be misleading, backtracking might be necessary
at a later point. Such hybrid proof strategies have not yet been developed or
tested, to the best of our knowledge.

4 Representation of Solutions: Constraint Languages

In Sect. 3.2 and 3.3, classes of pre-states are represented as substitutions or uni-
fication constraints. These representations are well-suited for pure first-order
problems [11], but they are not very appropriate for integers (or natural num-
bers) that are common in Java: (i) Syntactic unification does not treat inter-
preted functions like +, − or literals in special way. This rules out too many
constraints, for instance [X + 1 ≡ 2 ], as inconsistent. (ii) Unification conditions
t1 ≡ t2 cannot describe simple classes of solutions that occur frequently, for in-
stance classes that can be described by linear conditions like X ≥ 0.7

The constraint approach of Sect. 3.3 is not restricted to unification con-
straints: we can see constraints in a more semantic way and essentially use any
sub-language of predicate logic (also in the presence of theories like arithmetic)
that is closed under the connective ∧ as constraint language. For practical pur-
poses, validity should be decidable in the language, although this is not strictly
necessary. The language that we started using in our experiments is a combina-
tion of unification conditions (seen as equations) and linear arithmetic:

C ::= C ∧ C || tint = tint || tint 6= tint || tint < tint || tint ≤ tint || toth = toth

in which tint ranges over terms of type int and toth over terms of other types.
The constraints are given the normal model-theoretic semantics of first-order
formulae (see, for instance, [10]):

7 Depending on the representation of integers or natural numbers, certain inequations
like X ≥ 1 ⇔ X ≡ succ(X ′) might expressible, but this concept is rather restricted.
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Definition 1. A linear constraint C is called consistent if (i) for each arith-
metic structure (interpreting the symbols +, −, 6=, <, ≤ and literals as is com-
mon over the integers, and all other function symbols arbitrarily), (ii) there is
an assignment of values to metavariables such that C is evaluated to tt.

We are in the process of working out details of this language—so far, we do
not know whether consistency of constraints is decidable. Using a prototypical
implementation of the constraints in KeY (as part of the constraint approach of
Sect. 3.3), it is possible to find the following solution of (5) automatically:

kIL kLN oV nV headV nextV valV
KIL KLN 0 NV [0, . . .] [E, . . .] [NV , . . .]

KIL > 0 ∧
KLN > 0 ∧
E ≥ KLN

Compared to (7), this description of pre-states is more general and no longer con-
tains the precise number of involved objects of IntList and ListNode . It is enough
if at least one object of each class is created (KIL > 0,KLN > 0). Further, the so-
lution states that IntList .get(0) receives the invocation of delete with arbitrary
argumentNV , that IntList .get(0).head points to the object ListNode .get(0), that
the attribute ListNode .get(0).next is null (E ≥ KLN ), i.e., the receiving list has
only one element, and that the value of this element coincides with NV .

5 Related Work

Proof strategies based on metavariables and backtracking are related to common
approaches to test data generation with symbolic execution, see, e.g., [6, 8]. Con-
ceiving the approach as proving provides a semantics, but also opens up for new
optimisations like backtracking-free proof search. Likewise, linear arithmetic is
frequently used to handle branch predicates in symbolic execution, e.g. [12]. This
is related to Sect. 4, although constraints are in the present paper not only used
for branch predicates, but also for the actual pre- and post-conditions.

As discussed in Sect. 3.1, there is a close relation between ground proof pro-
cedures and test data generation using actual program execution.

A technique that can be used both for proving programs correct and in-
correct is abstract-refinement model checking (e.g., [13–15]). Here, the typical
setup is to abstract from precise data flow and to prove an abstract version of
a program correct. If this attempt fails, usually symbolic execution is used to
extract a precise witness for program incorrectness or to increase the precision
of the employed abstraction. Apart from abstraction, a difference to the method
presented here is the strong correlation between paths in a program (reacha-
bility) and counterexamples in model checking. In contrast, our approach can
potentially produce classes of pre-states that cover multiple execution paths.

Related to this approach is the general idea of extracting information from
failing verification attempts, which can be found in many places. ESC/Java2
[16] and Boogie [17] are verification systems for object-oriented languages that
use the prover Simplify as back-end. Simplify is able to derive counterexam-
ples from failed prove attempts, which are subsequently used to create warnings
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about possible erroneous behaviour of a program for certain concrete situations.
Another example is [18], where counterexamples are created from unclosed se-
quent calculus proofs. Making use of failing proof attempts has the advantage of
reusing work towards verification that has already been performed, which makes
it particularly attractive for interactive verification systems. At the same time, it
is difficult to obtain completeness results and to guarantee that proofs explicitly
“fail”, or that counterexamples can be extracted. In this sense, our approach is
more systematic.

6 Conclusions and Future Work

The development of the proposed method and of its prototypical implementation
has been driven by working with (small) examples [19], but we cannot claim to
have a sufficient number of benchmarks and comparisons to other approaches
yet. It is motivating, however, that our method can handle erroneous programs
like in Fig. 1 (and similar programs operating on lists) automatically, which we
found to be beyond the capabilities of commercial test data generation tools
like JTest [20, 19]. This supports the expectation that the usage of a theorem
prover for finding bugs (i) is most reasonable for “hard” bugs that are only
revealed when running a program with a non-trivial pre-state, and (ii) has the
further main advantage of deriving more general (classes of) counterexamples
than testing methods. The method is probably most useful when combined with
other techniques, for instance with test generation approaches that can find
“obvious” bugs more efficiently.

For the time being, we consider it as most important to better understand
the constraint language of Sect. 4 for representing solutions, and, in particular, to
investigate the decidability of consistency. Because of the extensive use of lists in
Sect. 2.3, it would also be attractive to have constraints that directly support the
theory of lists. Such constraints would introduce a notion of heap isomorphism,
which is a topic that we also plan to address. Further, we want to investigate the
combination of backtracking and incremental closure (as sketched in Sect. 3.4).
A planned topic that conceptually goes beyond the method of the present paper
are proofs about the termination behaviour of programs.
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A., Nipkow, T., eds.: Proceedings, IJCAR, Siena, Italy. Volume 2083 of LNAI.,
Springer (2001) 545–560

12. Gupta, N., Mathur, A.P., Soffa, M.L.: Automated test data generation using an
iterative relaxation method. In: SIGSOFT ’98/FSE-6: Proceedings of the 6th ACM
SIGSOFT international symposium on Foundations of software engineering, ACM
Press (1998) 231–244

13. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NUSMV: A new symbolic
model checker. International Journal on Software Tools for Technology Transfer 2

(2000) 410–425
14. Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model checking programs.

Automated Software Engineering 10 (2003) 203–232
15. Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate

abstraction of C programs. In: Proceedings, PLDI. (2001) 203–213
16. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:

Extended Static Checking for Java. In: Proceedings, PLDI. (2002) 234–245
17. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an

overview. In Barthe, G., Burdy, L., Huisman, M., Lanet, J.L., Muntean, T., eds.:
Post Conference Proceedings, CASSIS, Marseille. Volume 3362 of LNCS., Springer
(2005) 49–69

18. Reif, W., Schellhorn, G., Thums, A.: Flaw detection in formal specifications. In:
Proceedings, IJCAR, Siena, Italy. LNAI, Springer (2001) 642–657

19. Shah, M.A.: Generating counterexamples for Java dynamic logic. Master’s thesis
(2005)

20. Parasoft: JTest (2006)
www.parasoft.com/jsp/products/home.jsp?product=Jtest.


