Finding Universally Quantified Heap Invariants
by Horn Clause Transformations

1[0000700027152276673]’ Phlhpp Rﬁmmerl,2[0000700027273377098]

TJ ark Weberl [0000—0001—8967—6987]

Zafer Esen , and

1 Uppsala University, Sweden
2 University of Regensburg, Germany

Abstract. A common approach in software verification is to encode
a program as a set of Constrained Horn Clauses (CHCs), which are
then processed and solved automatically by a CHC solver. To streamline
this verification approach for the case of programs operating on muta-
ble linked data-structures, we have in earlier work proposed a theory of
heaps, defined within the SMT-LIB framework, which enables us to rep-
resent programs as CHCs with minimal loss of structural information. By
preserving high-level program information in the encoding, the theory of
heaps enables CHC solvers to apply various internal techniques for han-
dling program heap; among others, to encode the heap further using the
theory of arrays, to apply shape analysis, or to translate to a heap-less
program with the help of invariants. This paper explores the third op-
tion, developing transformation rules that rewrite a set of CHCs into an
equisatisfiable set of CHCs with additional predicates representing heap
invariants. The proposed method generalises the notion of space invari-
ants, which were previously introduced for verifying Java programs, by
lifting the entire transformation process to the CHC level. The paper de-
fines the transformation rules, provides detailed correctness proofs, and
discusses the strengths and limitations of the approach. We also outline
possible extensions of the method.

1 Introduction

In the context of automatic program verification, one of the key challenges is the
automatic discovery of program invariants. Constrained Horn Clauses (CHCs)
serve as an intermediate verification language, where program invariants do not
need to be explicitly specified. Instead, CHC solvers such as ELDARICA [I9],
GOLEM [§] and Z3-SPACER [25] can attempt to infer these invariants auto-
matically. Many verification frameworks represent programs as CHCs for this
purpose, with front-ends across languages such as C [I2/I8[15], Java [24] and
Rust [28]. Beyond program verification, CHCs are employed in a variety of ap-
plications, ranging from the verification of smart contracts [BII1] to synthesis
of specifications [34] and programs [16]. The CHC language facilitates a sepa-
ration of concerns, where verification system designers can focus on high-level
strategies for encoding their problems into CHCs, while CHC solver developers

2 Zafer Esen, Philipp Riimmer, and Tjark Weber

can focus on designing and optimising decision procedures. High-level theories —
such as algebraic data-types (ADTSs), bit-vectors, and the theory of arrays [29] —
which CHC solvers natively support, enable this separation of concerns. These
theories provide sorts, functions, and predicates to easily represent and operate
over program types.

A key challenge in software verification is the handling of programs operat-
ing on the heap, i.e., programs that represent data using mutable linked data-
structures [9]. In the context of CHCs, to handle the program heap, verification
tools typically pick a specific heap encoding that is applied prior to translating
the program to CHCs; this encoding could represent the program heap, for in-
stance, using the theory of arrays [29], using invariants [23], or using prophecy
variables [28]. However, this early elimination of the program heap in the verifica-
tion process runs counter to the separation of concerns that motivates the use of
CHCs in the first place, and has significant disadvantages: it leads to highly com-
plex analysis methods (e.g., alias and shape analysis) being implemented again
and again in different verification tools, while limiting CHC solvers to solving
the low-level CHCs that are obtained after eliminating the heap. To address this
issue, in previous work we have presented an SMT-LIB theory of heaps [14] that
enables the translation of programs to CHCs while keeping the relevant heap
operations intact. The theory of heaps makes it possible to preserve high-level
heap-related information in the encoding itself, and thus enables CHC solvers to
use more high-level decision procedures and transformations for handling heap
at the CHC level. In this paper we present one such transformation.

Our approach is based on the concept of space invariants [23], first defined
in the context of the CHC-based verification tool JAYHORN [24]. The approach
is a program transformation that abstracts heap interactions with assert and
assume statements over symbolic invariants that summarise the possible states
of objects on the heap. The transformed program does not contain any heap
interactions, therefore leads to a CHC representation that is free of explicit heap
operations. This program transformation is sound (i.e., the transformed program
is safe only if the original program is safe — “safe” meaning the program does
not violate a functional or memory-safety property), but it is incomplete (i.e.,
the transformed program can be unsafe even if the original program is safe).

Our method, which we call heap invariants, generalises the concept of space
invariants by lifting it from Java programs to CHCs, where the heap is repre-
sented using the theory of heaps. This generalisation makes the approach inde-
pendent of the programming language and implementable at the level of CHC
solvers. Moreover, in contrast to the space invariant transformation, our trans-
formation is complete. Finally, the space invariants approach in [23] is sound
only when there are no uninitialised memory accesses. Our approach does not
rely on this assumption.

The space invariant method has already been evaluated experimentally using
the implementation in JAYHORN; including various refinements of the method. In
this paper, we therefore focus on the more theoretical question of how the space
invariant encoding can be lifted to the level of CHCs, and how the transformation

Title Suppressed Due to Excessive Length 3

typedef struct Node {

1

2 int data;

3 struct Nodex next;

4]} Node;

5

6| void main () {

7 Nodex a = NULL;

8 while (nondetInt()) {

9 Nodex t = new Node (3, a); a*)@—)@%'"*)@%NULL
10 assert (I(t, Node (3, a)));
11 a = t;

12

13 while (a) {

14 Node n = xa;

15 assume (I(a, n));

16 assert (n.data == 3);

17 a = n.next;

18 }

19}

Fig. 1: Left: A C-like program that allocates and iterates over a linked list. The
lines 10 and 15 are added by our transformation at the program level using
the heap invariant “I”. Note that the program-level transformation is shown
here for clarity, but our actual transformation operates at the level of CHCs as
shown in Figure[2] Our transformation also introduces additional memory-safety
constraints, making it applicable even in programs with uninitialised memory
accesses. Right: A depiction of the list at the exit of the first loop.

can be shown correct. We provide formal proofs of correctness for both the
soundness and completeness of our transformation.

Contributions This paper contributes (i) a sound and complete generalisation of
the space invariants transformation at the level of CHCs. This transformation fa-
cilitates the inference of universally quantified heap invariants, without assuming
the absence of uninitialised memory accesses; and (ii) proofs of correctness.

2 DMotivating example

We first illustrate the concept of heap invariants at the level of programs. The
C-like program in Figure [1] allocates a linked list in a loop (line 8), writing the
value “3” to each node. The list is then traversed in a second loop (line 13), and
the property that each node contains the value “3” is asserted at line 16. We
ignore the assume and assert statements at lines 10 and 15 for now. Verifying
this program may seem like a simple verification task, but automatic verifica-
tion turns out to be surprisingly challenging. The size of the list is unbounded,
requiring the verification system to infer a quantified invariant that summarises
the list’s contents. CPACHECKER [5l4], a state-of-the-art C program verifier,
cannot verify this example. Similarly, CHC-based verifiers SEAHORN [I8] and
TRICERA [I5] also fail to verify it. PREDATORHP [20031], a tool based on shape

4 Zafer Esen, Philipp Riimmer, and Tjark Weber

analysis, can verify the example, but fails when the values written to the list are
not constant or cannot be abstractly described using an interval domain.

The verification task can be simplified by summarising the contents of the
heap through a heap invariant, introduced by the assume and assert statements
at lines 10 and 15. Assume that an oracle (such as a CHC-solver) provided the
invariant I(a,n) = (data(n) = 3), capturing the information that the data field
of all Nodes ever put on the heap has the value “3”. At every update site, we
validate this invariant by asserting it, as done at line 10 in Figure [} At each
read site, in this case at line 15, we can assume the same invariant. Given the
invariant I, verifying the program turns into an easy task that can be carried
out automatically by various software model checkers, as the assertion at line 16
is the same as the I provided by our oracle. Without I, the invariant of the
loop at line 8 needs to reason about the heap, which is a more complicated
universally quantified invariant over all addresses on the heap that is challenging
to automatically infer.

The transformation we applied is sound and complete in general. We for-
mally prove this at the CHC level in Section@ (Theorem for completeness and
Theorem [2| for soundness) and provide the intuition here.

For soundness, we have to prove that, regardless of the chosen I, if the trans-
formed program P’ is safe, then also the original program P is safe. Conversely,
assume P is unsafe, i.e., the assertion at line 16 fails due to a node with a data
value d other than “3”. It must then be the case that also P’ is unsafe, since
the d must have been written to the heap by some heap update operation. Then
either d satisfies I, in which case the assertion in line 16 can also fail in P’, or
otherwise the underlined assertion in line 10 in P’ can fail.

We obtain the completeness of the transformation by showing that if P is
safe, then there is some I such that P’ is also safe. For this, we can simply set
I to T, the weakest possible invariant. Then the underlined assert and assume
statements over I have no effect, making P’ equivalent to P, and thus P’ cannot
be unsafe when P is safe.

2.1 Representing the program in CHCs

A Constrained Horn Clause (CHC) is a disjunction of atoms and a constraint
over background theories (such as arithmetic, arrays, or heaps), in which each
atom typically represents a set of program states. CHCs provide a flexible way
to encode the control-flow of programs. A more detailed presentation of CHCs
is in Section

Figure [2] shows a set of CHCs, where the parts without underlines encode
the program in Figure[l| (the underlined parts are added by our transformation).
We provide a brief overview of the translating of programs into CHCs, and refer
o [7J6], and for CHCs using the theory of heaps to [I5/14], for more details.

In Figure [2, the predicates r1 and 75 are the loop invariants. The predicate
I, added by our transformation, is the heap invariant.

The theory of heaps provides several sorts and operations. The term h : Heap
represents the global program heap, and a : Address represents the pointer vari-

Title Suppressed Due to Excessive Length 5

r1(h,a) < h = emptyHeap A a = nullAddress (1)
ri(h',a") + ri(h,a) An = Node(3,a) A (h',a’) = allocate(h,n) (2)
I(a',n) + ri(h,a) An = Node(3,a) A (h',a’) = allocate(h, n) (3)
ro(h,a) < r1(h,a) (4)

ra(h,a’) = ra(h,a) An = read(h,a) A a # nullAddress A
a’ = next(n) A valid(h,a) A I(a,n) (5)

ra(h,a’) «+ r2(h,a) An = read(h,a) A a # nullAddress A
a’ = next(n) An = defObj A —valid(h, a) (6)

1+ ra(h,a) An =read(h,a) A a # nullAddress A
data(n) # 3 A valid(h,a) A I(a,n) (7

1 + 7r2(h,a) An =read(h,a) A a # nullAddress A
data(n) # 3 An = defObj A —wvalid(h, a) (8)

Fig.2: The CHC representation of the program given in Figure [1|is shown with-
out underlines. The underlined parts are added by our transformation.

able a from the program. read reads from an Address, and write updates an
Address. allocate allocates a new object on the heap and returns its Address.
emptyHeap returns a Heap with no allocated addresses, and nullAddress returns
an always-unallocated Address. valid checks whether an Address is allocated.
Lastly defObj is the default object returned on invalid reads, defined when
declaring the heap theory. A list of heap operations is given in Table

We use mathematical integers for the C int type, and the Address sort
from the theory of heaps for pointers. The C struct can be encoded using
algebraic data-types (ADTs). For the Node struct, we define the ADT sort
SNode. Instances of SNode can be constructed using its constructor Node :
Integer x Address — SNode, with field access via selector functions data :
SNode — Integer and next : SNode — Address.

In Figure 2| CHC represents program entry, where the heap is empty,
and « is the null address. CHC encodes the body of the first loop, allocating
a new SNode at each iteration. The transformation adds CHC , asserting the
predicate I using the the node that was just allocated.

The next CHC from 71 to ro encodes the exit of the first loop. The
encoding does not constrain when to exit the first loop, which corresponds to
the nondeterministic choice in the guard of the first loop of the program. The
remaining CHCs encode the body of the second loop, which iterates as long as
a # nullAddress.

A heap read can be either valid or invalid: for valid reads, we can assume
the heap invariant I holds; for invalid reads the object returned is some error
value (defObj) predefined for our program, following the semantics of read. The

6 Zafer Esen, Philipp Riimmer, and Tjark Weber

additional constraints that use the valid predicate ensure that the transformation
remains sound even in the presence of invalid heap accesses.

The CHCs and handle valid reads, and the CHCs @ and handle
invalid reads. The CHCs and (@ capture the continuation of the loop, which
advances to the next field of the read node in each iteration. Finally, the CHCs
and (8)) assert that the data field of the read node must have the value 3.

Given a set of CHCs, a CHC solver such as ELDARICA attempts to find
interpretations for the uninterpreted predicates (here 71,79 and I), such that
all clauses are satisfiable. If so, the program is considered safe. If any clause is
unsatisfiable (i.e., an assertion is violated), the program is unsafe.

The original encoding (without underlines) cannot be verified by ELDARICA
(currently the only solver supporting the theory of heaps), but the transformed
encoding is quickly verified, with I interpreted as data(n) = 3.

3 Related Work

First proposed in the context of the CHC-based Java verification tool JAY-
HORN [24], the space invariants approach [23] is inspired by refinement types
and liguid types [33]. The space invariants approach first applies a program
transformation to minimise the number of heap reads and writes by merging
them into pull and push operations, where possible. In the second step, push
and pull operations are abstracted by introducing symbolic space invariants: a
push asserts the space invariant, and a pull assumes it. The resulting program is
free of heap interactions. Unlike our transformation, the original space invariants
approach is incomplete, but the authors propose several refinements to improve
completeness. Moreover, the space invariants approach requires that there are no
uninitialised memory accesses for the transformation to be sound. Our approach
is sound even in the presence of uninitialised memory accesses.

Recently, software model checkers have started to support programs that
include uninterpreted predicates [15J38], which make it possible to encode various
different proof rules at the level of programs. This functionality can be used to
describe space invariants [38]. Our transformation has similarities to such an
encoding, but is applied at the level of CHCs.

A Dbasic decision procedure for the theory of heaps is proposed in earlier
work [I3]. Although it is both sound and complete, it often fails to infer quantified
heap invariants that our transformation facilitates, and fails to solve the example
shown in Section [2| Still, our transformation preserves the heap in the CHCs,
and remains complete by relying on decision procedures such as the one in [I3].

There is a wide range of analysis methods tailored to the verification of
heap-manipulating programs: those include shape analysis [35S2ITITOIS7I22I17],
tree automata [21I2], and type-based techniques [26/30027]. Our method differs
from such tailor-made approaches by relying on a CHC solver as the analysis
back-ends, and is as such relatively easy to implement. Our approach is also
easy to combine with other kinds of static analysis, in particular methods for
value analysis available in CHC solvers. As our transformation preserves the

Title Suppressed Due to Excessive Length 7

original heap constraints, our work could be used in combination with many of
the mentioned techniques to further enhance heap reasoning.

4 Preliminaries

4.1 First-order logic

Syntazx of a many-sorted first-order logic. A many-sorted signature in first-order
logic is denoted by X' = (F, P, S,d), where F' is a set of function symbols, P
is a set of predicate symbols, S is a set of sorts, and § is a sort mapping. The
mapping § maps each n-ary function to an (n + 1)-tuple of sorts from S, and
each predicate symbol to an n-tuple of sorts. Additionally, we assume a countably
infinite set of sorted variables, X', with ¢ also used to specify the sort of each
variable. A variable z with sort s is denoted by z : s, where s = 0(x).

A term is a variable or a function symbol applied to its arguments. An atom is
a predicate symbol applied to its arguments. A [iteral is an atom or its negation.
A clause is a disjunction of literals. Formulas are built from atoms via the usual
logical connectives: negation, conjunction, disjunction, implication, as well as
existential and universal quantification over sorted variables.

Semantics. A X-structure is a pair M = (D,Z), where D is a sort-indexed
family of sets {Dy | s € S}, and T is an interpretation function that maps each
sort s € S to Ds, each function symbol f € F with 6(f) = (s1,82,---,Sn+1)
to a set-theoretic function Z(f): Z(s1) X Z(s2) X -+ X Z(sp) — Z(Sp+1), and
each predicate symbol p € P with d(p) = (s1,82,...,S,) to a relation Z(p) C
Z(s1) X Z(s2) X -+ X Z(sp). A variable assignment [for M maps each variable
x € X to an element S(x) € Z(d(x)).

A theory T is a pair (X7, M) of a many-sorted signature Y7 and a class
of Xp-structures Mr. In this paper we assume that the signature contains (at
least) the theory of heaps [14], whose operations are interpreted according to
their standard semantics (cf. Table [1)).

A formula ¢ over some signature X is T-satisfiable if there exists a Xop-
structure My = (Dp,Zr) that can be extended to a X-structure M = (D,7)
(such that Dy C D, and 7 restricted to X7 coincides with Zr) and a variable
assignment [for M, satisfying the formula. We write Xy C X to indicate that X
is an extension of X7. The symbols in X'\ X1 are called uninterpreted, and Z\ Zr
is called a solution for the uninterpreted symbols.

4.2 Constrained Horn clauses (CHCs)

A Constrained Horn Clause (CHC) in first-order logic is a sentence

VZ. (H + (cA /n\ B;))

=0

8 Zafer Esen, Philipp Riimmer, and Tjark Weber

where H is either an atom or 1, B; (for i =1,...,n) is an atom, Bo = T and ¢
is a constraint over some theories (e.g., the theories of arrays, heaps, etc.). The
antecedent of a CHC is called the body, and the consequent is called the head.

CHC:s are typically written using a left arrow for the implication (as above)
and by leaving universal quantifiers implicit, which we follow in this paper.

We define R as the set of all non-theory (i.e., uninterpreted) relation symbols,
and define Rels(C) as the operator that returns all relation symbols in a set of
CHCs C that are elements of R. When encoding programs with CHCs, these
relation symbols can represent sets of program states.

Given a set of CHCs C, a CHC-solver attempts to compute a solution to
Rels(C) such that C is satisfiable. When the CHCs encode the correctness of a
program, a solution implies the program is safe, and corresponds to the program
invariants. If the CHCs are unsatisfiable, the solver returns a counterexample
that corresponds to a program trace from program entry to the violated property.

4.3 Semantics of CHCs

The function valyz, g, assigns truth values to logical formulas based on the in-
terpretations of symbols and variables. In addition to the structure My interpret-
ing the theory symbols, and the variable assignment 3, valas, 5,, has as index
a relation symbol interpretation o, mapping every relation symbol r € R with
o(r) = (s1,82,...,8,) to arelation o(r) C Z(s1) X Z(s2) X -+ X Z(sy). A model
(or a solution) for a CHC C is an interpretation o such that valys, g.o(C) =T
for all C' € C. For simplicity we only consider theories in which M7 is a singleton
and omit it in the equations. We use the notation o =5 C if o is a model of C.
A set of CHCs is satisfiable if it has a model, and unsatisfiable otherwise.

Computing the least model of a set of CHCs The least model o, of a
satisfiable set of CHCs C can be derived by computing a sequence of interpreta-
tions, until a fixed-point is reached. The sequence before reaching the fixed-point
represents an under-approximation of the least model. In the context of program
verification, the least model corresponds to the collecting semantics of a program.

The fixed-point computation starts with ¢® = {r — 0 | r € R}. Given
some interpretation o™, the next interpretation 0"+ = Tr(0™) is computed by
applying the immediate consequence operator Tt:

(H<cANey NBiAN...ANB,) €C,
Te(o)(r) = § valg (%) | H=r(Z), S is a variable mapping s.t. (9)
valgo(cNenb ABiyA...ANBy) =T

The immediate consequence operator T¢ is monotonic, i.e., if o1 C o9, then
Tc(o1) € Te(oz), and the domain of T is a complete lattice (i.e., R x P(D*)),
which together imply that a least fixed-point exists by Tarski’s fixed-point the-
orem [36]. This fixed-point computation does not necessarily reach a fixed-point
after finitely many steps, as is the case in the example below. In general, the

least model is | J,,cy 77(0), the limit of the sequence 6,0,

Title Suppressed Due to Excessive Length 9

Table 1: Theory of heaps operations and their interpretations as defined in [I3].
The sorts are interpreted as Z(Heap) = Z(Object)* and Z(Address) = N.

Operation Signature Interpretation
nullAddress () — Address 0
emptyHeap () — Heap €
allocate Heap x Object — Heap x Address — (h 4 [o], |h| + 1)
valid Heap x Address — Bool 0<a<|h|
hla —1 if 0 <lh
read Heap x Address — Object [} o< Cf < 1Al
defOby otherwise.
hla —1 if 0 <|h
write Heap x Address x Object — Heap [a o] if0< ? < IR,
otherwise.

Example. Consider the following set of CHCs C:
r(l)« T
rx4+1)«r(x)Ax >0
Ler(x)Anz<0

To compute the least model for C, we apply the immediate consequence
operator T¢ iteratively, starting from the empty interpretation o¥ = {r — 0}:

- ol = Te(o?) = {r 1))
- % = Telo) = {r = {12}

— ot =Te(o" Y ={r—{1,...,i}}

This sequence of interpretations forms a chain, and its least fixed-point {r —
NT} represents the least model of C. Any other model that satisfies C must
include the least model. For instance o = {r — N} is a model of C too, but it
is not the least one because Nt C N. O

4.4 The theory of heaps

The operations and sorts of the theory of heaps, along with their interpretations,
are provided in Table [I} The Heap sort is interpreted as a sequence of Objects,
and the Address sort is interpreted as the set of natural numbers. The Object sort
is for objects to be put on the heap, which often needs to be an ADT that refers
to the Address sort (as in the example in Section , meaning it must be part
of the heap theory declaration. The default object (defObj) returned on invalid
reads is also define when declaring the theory, and is a term of sort Object. For
a formal presentation of the theory, see [I4], and for a decision procedure based
on the semantics in Table |1} we refer to [13].

10 Zafer Esen, Philipp Riimmer, and Tjark Weber

5 Heap Invariants for CHCs

5.1 Overview

We now formally introduce the transformation that augments a set of CHCs with
heap invariants, based on the concept of space invariants [23]. We focus first on
the simplest possible encoding without any of the refinements discussed in [23].
Due to the CHC setting (as opposed to Java), there are some key differences:
(i) in our transformation, the original heap terms and operations are preserved,
whereas the space invariant encoding eliminates the heap completely; and (ii) we
use a single invariant symbol to describe the reachable states of all heap objects,
whereas in space invariants a separate symbol is used per program type. Point (ii)
stems from the fact that addresses in the theory of heaps are untyped, as the
theory of heaps allows terms with a single user-defined Object sort to be placed
on the heap. The type of an accessed object on the heap is therefore, in general,
unknown at encoding time.

We define our transformation in rule-notation, with each of the heap opera-
tions being handled by one rule. Rules have the shape

CHC before translation (10)
CHCs after transformation (11)

and state that CHC is replaced by the CHCs . The transformation runs
through a set of CHCs only once.

5.2 Assumptions

Our transformation relies on three assumptions about the clauses to be rewritten.
The assumptions can naturally be satisfied by CHCs that encode programs, and
could be lifted in the transformation, at the cost of a more involved presentation.

Assumption 1: Isolated heap operations. We only consider CHCs that
contain at most one heap operation from Fj, = {allocate, write, read, emptyHeap}:

H(Z0) B1(Z1) A+ A Bp(Zn) AcAen (12)

Here), ..., %, denotes tuples of variables, ¢ is a constraint not containing any
of Fy, and ¢, is either T or an equality of the form Z = f(g), where f € Fj, and
Z, y are tuples of variables. Any set of CHCs can be normalised to the above
form by splitting CHCs with multiple heap operations.

Assumption 2: Heap flowing from body. For a CHC as in , with ¢y,
being of the form z = f(§) for some f € F},, we require that any heap variable h
occurring in ¢ also occurs in Z1,...,Z,. This means that a heap to be updated
has to come from the body of the CHC, while the updated heap may flow both
to the clause body or to the clause head. We disallow CHCs such as H(h) +
B(W,a,o0),write(h,a,0) = h’ with flow from the head to the body.

Title Suppressed Due to Excessive Length 11

Assumption 3: No heap out of thin air. For a CHC as in , we require
that every heap variable h occurring in Z also occurs in Z1, ..., T, or in the left-
hand side of the equality c¢;. This prevents uninitialized heap variables, which
could have arbitrary content, from being passed to the head of a clause, and
ensures that every object read from a heap has to be written to the heap in
some other clause.

5.3 Transformation of heap updates

The theory of heaps has three update operations: emptyHeap, allocate and write.
For the latter two operations, our transformation adds assertions that the heap
invariant holds for the new object put on the heap. No transformation is neces-
sary for emptyHeap, as the empty heap does not contain any objects.

emptyHeap The transformation rule for emptyHeap is given in — ([14). This
rule preserves the original clause and does not add any new clauses.

head + body A h = emptyHeap() (13)
head < body A h = emptyHeap() (14)

allocate The transformation rule for allocate is given in (15 — (17). This rule
preserves the original clause. Since an allocate operation always returns a valid
heap—address pair, a valid predicate is not needed in (17 for memory safety.

head <+ body A (h1,a) = allocate(hg, 0) (15)
head < body A (h1,a) = allocate(hg, 0) (16)
I(a,0) < body A (h1,a) = allocate(hg, 0) (17)

write The transformation rule for write is given in - . The rule is applied
when hg € vars(body) A hy € vars(head). This rule also preserves the original
clause, but unlike allocate, a write might be to an invalid address, so in (the
heap invariant is only asserted when the write is valid.

head < body A hy = write(hg, a, 0) (18)
head <+ body A hy = write(hg, a, 0) (19)
I(a,0) < body A valid(hg, a) (20)

5.4 Transformation of heap reads

The theory of heaps provides the operation read for reading. When the read
address is valid,the heap invariant I constrains objects read from that address
to only those that the invariant was asserted with (i.e., I appears at the head

12 Zafer Esen, Philipp Riimmer, and Tjark Weber

of the CHC) in and (20). When the read address is invalid, the read value
defaults to defObj as shown in , according to the semantics of read.

head < body A o = read(h, a) (21)
head < body A o = read(h, a) Avalid(h,a) A I(a,o0) (22)
head < body A o = read(h,a) A o = defObj A —valid(h, a) (23)

6 Correctness of the Heap Invariants Transformation ¥

Let C; be a set of CHCs, ¥ a transformation function over a set of CHCs and
Cy = T(C). We say that C; and C, are equisatisfiable if C; is satisfiable if and
only if Cs is satisfiable; in this case, ¥ is correct.

There is 01 s.t. 01 =g C; = there is 03 s.t. 02 =5 Ca. (24)
There is 09 s.t. 02 =3 Ca = there is 01 s.t. 01 =5 C;. (25)
Equation corresponds to the soundness of the transformation, and Equa-

tion corresponds to its completeness. We will first show completeness in
Theorem [I} and then soundness in Theorem [2]

6.1 Completeness of ¥
Theorem 1. If Cy is satisfiable, then Cy is satisfiable.

Proof. This direction of the proof is trivially established by interpreting I as
I ={(a,0) | a € Z(Address) No € Z(Object)}, i.e., the set of all (Address, Object)
pairs. A way to see this is to go through the transformation rules and rewrite all
atoms with the predicate I as T, which leads to C; = C,.

6.2 Soundness of T

We show soundness through transfinite induction over the least-model compu-
tation of Cy. First, we define an induction formula @ that always holds during
the least-model computation of C, under a fixed structure M.

We collect all pairs (r,7) where r is a predicate symbol in Co and i is the
index of an argument of sort Heap:

HP = {(r,i) | r € Rels(C3) A 6(r); = Heap}
Then the induction formula @ is defined as:

o=\ Vi (r(z) - Va. (valid(z;,a) — I(a,read(z;, a))) (26)
(r,i)€EHP

which asserts that the heap invariant I tracks all objects that can be read from
all valid heap — address pairs.

Title Suppressed Due to Excessive Length 13

Lemma 1. ¢/ = Téz(@) = o/ C Tg,(07).

Lemmal[]asserts that the immediate consequence operator is increasing when
the computation starts with the empty interpretation () (i.e., the interpretation
that maps all relation symbols to).

Proof. 7 denotes the result of applying T¢, at step j (passing the result of
the previous iteration as argument each time), starting with 0 = (). We have
that @ C T¢,(0), and it follows from the monotonicity of T¢, that its continued
application will generate the ascending Kleene sequence) C o C ... C o/.

Lemma 2. ¢ holds under the least model o,, of Cy (i.e., 0, =5 P).

Proof. We do a transfinite induction over the fixed-point computation o,, of Cs:
o, = pdt, (27)

Base case: 0 =3 ®. The base case vacuously holds, because 0¥ is the
interpretation that maps all relation symbols to (), so valg ,(r(Z)) = L for all r
and Z. This makes the left-hand side of the first implication in false, which
implies 0¥ =5 ©.

Inductive step: 07 |5 & = o/T! =5 &

Assume the induction hypothesis 07 =g @. An application of the immediate
consequence operator to o/ yields the next interpretation, i.e., 0/ t1 = T, (7).
Recall the immediate consequence operator Tg, (over Cs):

(r(@)«cANepy AByA...ABy) € Cy,
Te,(o)(r) = < valg »(Z) | B is a variable mapping s.t. (28)
valgs(cNey NABiyA...ABy) =T

The normal form of CHCs (which we assume for C; and which is preserved
by ¥) implies that there can be at most one heap term in a CHC that is produced
as the result of a heap operation. By the induction hypothesis, this reduces the
big conjunction in to the case of checking (r,7) where r is a relation symbol
with a heap argument, and ¢ is the index of the heap term that was produced as
a result of a heap operation. Furthermore, the only heap operations that produce
a new heap term are emptyHeap, allocate and write, so we only need to consider
the rules over these operations and the unbound heap terms rule. Other (r,1)
pairs satisfy @ due to the induction hypothesis.

The proof is done in cases for rules involving aforementioned heap operations.
In each case we show that Tg,(07) g5 ©.

Since C, is the result of applying ¥ to a set of clauses C; in normal form, a
clause 7(Z) <~ cAcpy AB1 A...A By, must be in one of the following forms (where
cp, is either T or an allowed heap formula in the normal form):

1. ¢y 2 h = emptyHeap() due to (14).
By the axioms of the theory of heaps, h = emptyHeap() — Va. —wvalid(h, a).
Due to the contradiction in the left-hand side of the second implication
valid(Z;, a), this case shows /7! =5 &.

14 Zafer Esen, Philipp Riimmer, and Tjark Weber

2. cp = (hy,ay1) = allocate(hg,0) and r(z) # I(a,0) due to
By the induction hypotheses, we know that Va. valid(hg,) — I(a, read(hg, a)
holds. We also know, by the axioms of the theory of heaps, that after the
allocation valid(h1,a;) A read(h1,a1) = o holds. Due to ([17), I(a1,0) +
cAcpAB1A. . .ABy, is also in Ca. Due to TIt,, this implies that valg »((a1,0)) €
07+1(I) with o = read(h1, a1). By Lemmal[1] this shows oIt =g @

3. cn, = hy = write(hg, a,0) and 7(z) # I(a,0) due to
The formula Va'. valid(hg,a’) — I(a,read(hg,a’) holds by the induction
hypotheses. We also know, by the axioms of the theory of heaps, that
(valid(hg,a) — o = read(hy,a)) A (—valid(hg,a) — ho = hy). We consider
both sides of this conjunction in cases. (i) Assume that —wvalid(hg, a) holds.
Since hg = hq, by the induction hypotheses 07! =5 & holds. (i) Assume
that valid(hg,a) holds. We have o = read(hy,a). Due to (20), I(a,0) +
write(hg, a, 0)Avalid(hg, a) is also in Cs. Due to Tt,, this implies that val@ +((a,0)) €
oI 1(I) with o = read(ho, a). By Lemmall] this shows 0% =5 &

CHCs in other forms do not generate or modify a heap term, and o/ *! =5 &
directly holds by the induction hypothesis and Lemmal [T}

Limit case: Vj <\ ol Eg® = o’ 5 ®

Assume the induction hypothesis holds for all j < A.

By the definition of the limit ordinal and the fixed-point computation in ,

A is the limit of the sequence (07);<y, i.e., o* =Ujcr0’

For each predicate r € R, consider a tuple of arguments Z that include some
Heap argument h. By the definition of o, if 7(Z) € 0, then there exists a j < A
such that r(Z) € o/. Since the induction hypothe51s holds for all j < A\, we have
07 =5 ®. Therefore, for each address a, if valld(h a) holds, then by (| ., we have
I(a,read(h,a)) € o7. Hence, I(a, read(h a)) € o*, as o is the union of all o7 for
J<A

This shows o =3 @ for the limit case, concluding the proof of Lemma

Theorem 2. If Cy is satisfiable, then Cy is satisfiable.

Proof. Since all rules except the rule for heap reads preserve the original CHCs
from C;, satisfiability of those clauses remains the same in their least models,
o1 for C; and oy for Cy. As a result, we only need to show that the theorem
holds in CHCs with heap reads.

Consider the case where C; has a clause where the heap read rule given in
- is applicable. In the least models of C; and Cs, we consider the two
cases where valid(h, a) and —valid(h,a) hold. (i) Assume —‘V3|Id h,a). The body
of) has a contradiction, which makes it true. Since ., this case is
proved (ii) Next, assume valld(h a). The body of (23) has a contradlctlon which
makes it true. By Lemma [2| we have that oy =3 @ (where @ is the induction
formula for Cy). In @ , we assume 7 is a relation symbol of one of the body
literals of that has h as an argument, and that z; = h. By Lemma |2| and
since o = read(h, a), we have that I(a,0) holds. As a result, we have = (21).

Showing that the CHCs with heap reads in both C; and C; are equivalent
in both cases concludes the proof of Theorem 2]

Title Suppressed Due to Excessive Length 15

We have proved and by Theorems andrespectively, which concludes
that the transformation ¥ is correct (i.e., C and T(C) are equisatisfiable).

7 Extensions

Flow sensitivity. The heap invariant introduced by the transformation we
presented is flow insensitive: it cannot distinguish between different updates to
the same address. The space invariants presented in [23] are also flow insensitive,
but the authors describe how it can be made flow sensitive through an extension.
The same approach can be adapted to our transformation at the level of CHCs
to make the heap invariant flow sensitive.

We first assign a unique tag to every CHC that contains allocate or write.
Then, we redefine the Object sort to a tagged Object, which is a pair containing
the original object and its tag. This has the effect of storing the tag of every
update site in the object, and consequently in the heap and the heap invariant.
In every CHC that contains a read, we introduce a constraint ¢, specific to that
read, such that the tag of the read object can only come from certain updates.
As in [23], this extension requires an external oracle to determine ¢.

Adding more arguments to the heap invariant. In some cases the heap
invariant is insufficient to express the relations between heap updates and reads.
For example, in Figure [1| at line 9, assume that the written value is changed
from “3” to “x > 0 7 y : z” where x, y and z are program variables. A useful /
cannot be expressed without referring to these variables, but more arguments can
always be introduced to I without affecting the correctness of the transformation.

8 Conclusion

We have developed a sound and complete transformation of CHCs that gen-
eralises the concept of space invariants to the CHC level using the theory of
heaps. By lifting the transformation from Java programs to CHCs, our approach
becomes language-independent and can be implemented directly within CHC
solvers. We provided formal proofs of correctness for both soundness and com-
pleteness, without assuming the absence of uninitialised memory accesses.

The heap invariants transformation facilitates the inference of universally
quantified heap invariants, and provides a formally verified foundation for fu-
ture extensions, such as making heap invariants flow-sensitive. The original heap
constraints within the CHCs are preserved, which allows combining the heap in-
variants transformation with other approaches such as shape analysis and tree
automata to allow verification of more complex heap-manipulating programs.

16 Zafer Esen, Philipp Riimmer, and Tjark Weber

References

1. Abdulla, P.A., Bouajjani, A., Cederberg, J., Haziza, F., Ji, R., Rezine, A.: Shape
analysis via monotonic abstraction. In: Muscholl, A., Ramanujam, R., Rusinow-
itch, M., Schwentick, T., Vianu, V. (eds.) Beyond the Finite: New Challenges in
Verification and Semistructured Data, 20.04. - 25.04.2008. Dagstuhl Seminar Pro-
ceedings, vol. 08171. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, Germany
(2008), http://drops.dagstuhl.de/opus/volltexte/2008/1559/

2. Abdulla, P.A.; Holik, L., Jonsson, B., Lengél, O., Trinh, C.Q., Vojnar, T.: Verifi-
cation of heap manipulating programs with ordered data by extended forest au-
tomata. Acta Informatica 53(4), 357-385 (2016). https://doi.org/10.1007/S00236-
015-0235-0

3. Alt, L., Blicha, M., Hyvarinen, A.E.J., Sharygina, N.: Solcmc: Solidity compiler’s
model checker. In: Shoham, S., Vizel, Y. (eds.) Computer Aided Verification - 34th
International Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceed-
ings, Part I. Lecture Notes in Computer Science, vol. 13371, pp. 325-338. Springer
(2022). |https://doi.org/10.1007/978-3-031-13185-1_16

4. Baier, D., Beyer, D., Chien, P., Jankola, M., Kettl, M., Lee, N., Lemberger, T.,
Rosenfeld, M.L., Spiessl, M., Wachowitz, H., Wendler, P.: Cpachecker 2.3 with
strategy selection - (competition contribution). In: Finkbeiner, B., Kovécs, L.
(eds.) Tools and Algorithms for the Construction and Analysis of Systems - 30th
International Conference, TACAS 2024, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City,
Luxembourg, April 6-11, 2024, Proceedings, Part III. Lecture Notes in Computer
Science, vol. 14572, pp. 359-364. Springer (2024). https://doi.org/10.1007/978-3-
031-57256-2_21

5. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verification -
23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings. Lecture Notes in Computer Science, vol. 6806, pp. 184-190. Springer
(2011). https://doi.org/10.1007/978-3-642-22110-1_16

6. Bjogrner, N., Gurfinkel, A., McMillan, K.L., Rybalchenko, A.: Horn clause
solvers for program verification. In: Beklemishev, L.D., Blass, A., Dershowitz,
N., Finkbeiner, B., Schulte, W. (eds.) Fields of Logic and Computation II
- Essays Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday.
Lecture Notes in Computer Science, vol. 9300, pp. 24-51. Springer (2015).
https://doi.org/10.1007/978-3-319-23534-9_2

7. Bjgrner, N.S., McMillan, K.L., Rybalchenko, A.: On solving universally quanti-
fied Horn clauses. In: Logozzo, F., Fahndrich, M. (eds.) Static Analysis - 20th
International Symposium, SAS 2013, Seattle, WA, USA, June 20-22, 2013. Pro-
ceedings. Lecture Notes in Computer Science, vol. 7935, pp. 105-125. Springer
(2013). |https://doi.org/10.1007/978-3-642-38856-9_8

8. Blicha, M., Britikov, K., Sharygina, N.: The golem Horn solver. In: Enea, C., Lal,
A. (eds.) Computer Aided Verification - 35th International Conference, CAV 2023,
Paris, France, July 17-22, 2023, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 13965, pp. 209-223. Springer (2023). https://doi.org/10.1007/978-3-
031-37703-7_10

9. Bohme, S., Moskal, M.: Heaps and data structures: A challenge for automated
provers. In: Bjgrner, N.S., Sofronie-Stokkermans, V. (eds.) Automated Deduction
- CADE-23 - 23rd International Conference on Automated Deduction, Wroclaw,

http://drops.dagstuhl.de/opus/volltexte/2008/1559/
https://doi.org/10.1007/S00236-015-0235-0
https://doi.org/10.1007/S00236-015-0235-0
https://doi.org/10.1007/978-3-031-13185-1_16
https://doi.org/10.1007/978-3-031-57256-2_21
https://doi.org/10.1007/978-3-031-57256-2_21
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-642-38856-9_8
https://doi.org/10.1007/978-3-031-37703-7_10
https://doi.org/10.1007/978-3-031-37703-7_10

10.

11.

12.

13.

14.

15.

16.

17.

18.

Title Suppressed Due to Excessive Length 17

Poland, July 31 - August 5, 2011. Proceedings. Lecture Notes in Computer Science,
vol. 6803, pp. 177-191. Springer (2011). https://doi.org/10.1007/978-3-642-22438-
6-15

Bouajjani, A., Dragoi, C., Enea, C., Rezine, A., Sighireanu, M.: Invariant synthe-
sis for programs manipulating lists with unbounded data. In: Touili, T., Cook, B.,
Jackson, P.B. (eds.) Computer Aided Verification, 22nd International Conference,
CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings. Lecture Notes in Com-
puter Science, vol. 6174, pp. 72-88. Springer (2010). |https://doi.org/10.1007/978-
3-642-14295-6_8

Britikov, K., Zlatkin, I., Fedyukovich, G., Alt, L., Sharygina, N.: Soltg: A chc-
based solidity test case generator. In: Gurfinkel, A., Ganesh, V. (eds.) Computer
Aided Verification - 36th International Conference, CAV 2024, Montreal, QC,
Canada, July 24-27, 2024, Proceedings, Part 1. Lecture Notes in Computer Sci-
ence, vol. 14681, pp. 466-479. Springer (2024). https://doi.org/10.1007/978-3-031-
65627-9_23

Ernst, G.: Korn - software verification with Horn clauses (competition contribu-
tion). In: Sankaranarayanan, S., Sharygina, N. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems - 29th International Conference, TACAS
2023, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2022, Paris, France, April 22-27, 2023, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 13994, pp. 559-564. Springer (2023).
https://doi.org/10.1007/978-3-031-30820-8_36

Esen, Z., Rimmer, P.: Reasoning in the theory of heap: Satisfiability and interpola-
tion. In: Ferndndez, M. (ed.) Logic-Based Program Synthesis and Transformation
- 30th International Symposium, LOPSTR 2020, Bologna, Italy, September 7-9,
2020, Proceedings. Lecture Notes in Computer Science, vol. 12561, pp. 173-191.
Springer (2020). https://doi.org/10.1007/978-3-030-68446-4_9

Esen, Z., Rummer, P.: An SMT-LIB theory of heaps. In: Déharbe, D., Hyvéarinen,
A.E.J. (eds.) Proceedings of the 20th Internal Workshop on Satisfiability Modulo
Theories co-located with the 11th International Joint Conference on Automated
Reasoning (IJCAR 2022) part of the 8th Federated Logic Conference (FLoC 2022),
Haifa, Israel, August 11-12, 2022. CEUR Workshop Proceedings, vol. 3185, pp. 38—
53. CEUR-WS.org (2022), https://ceur-ws.org/Vol-3185/paper1180.pdf
Esen, Z., Rimmer, P.: Tricera: Verifying C programs using the theory of heaps.
In: Griggio, A., Rungta, N. (eds.) 22nd Formal Methods in Computer-Aided De-
sign, FMCAD 2022, Trento, Italy, October 17-21, 2022. pp. 380-391. IEEE (2022).
https://doi.org/10.34727 /2022 /isbn.978-3-85448-053-2_45

Fedyukovich, G., Ahmad, M.B.S., Bodik, R.: Gradual synthesis for static paral-
lelization of single-pass array-processing programs. In: Cohen, A., Vechev, M.T.
(eds.) Proceedings of the 38th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017.
pp. 572-585. ACM (2017). [https://doi.org/10.1145/3062341.3062382

Giet, J., Ridoux, F., Rival, X.: A product of shape and sequence abstractions.
In: Hermenegildo, M.V., Morales, J.F. (eds.) Static Analysis - 30th Interna-
tional Symposium, SAS 2023, Cascais, Portugal, October 22-24, 2023, Proceed-
ings. Lecture Notes in Computer Science, vol. 14284, pp. 310-342. Springer (2023).
https://doi.org/10.1007/978-3-031-44245-2_15

Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn Verification
Framework. In: Kroening, D., Pasareanu, C.S. (eds.) Computer Aided Verification
- 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-

https://doi.org/10.1007/978-3-642-22438-6_15
https://doi.org/10.1007/978-3-642-22438-6_15
https://doi.org/10.1007/978-3-642-14295-6_8
https://doi.org/10.1007/978-3-642-14295-6_8
https://doi.org/10.1007/978-3-031-65627-9_23
https://doi.org/10.1007/978-3-031-65627-9_23
https://doi.org/10.1007/978-3-031-30820-8_36
https://doi.org/10.1007/978-3-030-68446-4_9
https://ceur-ws.org/Vol-3185/paper1180.pdf
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_45
https://doi.org/10.1145/3062341.3062382
https://doi.org/10.1007/978-3-031-44245-2_15

18

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Zafer Esen, Philipp Riimmer, and Tjark Weber

24, 2015, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9206, pp.
343-361. Springer (2015). jhttps://doi.org/10.1007/978-3-319-21690-4_20

Hojjat, H., Riimmer, P.: The ELDARICA Horn solver. In: Bjgrner, N., Gurfinkel,
A. (eds.) 2018 Formal Methods in Computer Aided Design, FMCAD 2018,
Austin, TX, USA, October 30 - November 2, 2018. pp. 1-7. IEEE (2018).
https://doi.org/10.23919/FMCAD.2018.8603013

Holik, L., Kotoun, M., Peringer, P., Sokova, V., Trtik, M., Vojnar, T.: Predator
shape analysis tool suite. In: Bloem, R., Arbel, E. (eds.) Hardware and Software:
Verification and Testing - 12th International Haifa Verification Conference, HVC
2016, Haifa, Israel, November 14-17, 2016, Proceedings. Lecture Notes in Computer
Science, vol. 10028, pp. 202-209 (2016). https://doi.org/10.1007/978-3-319-49052-
6-13

Holik, L., Lengdl, O., Rogalewicz, A., Siméacek, J., Vojnar, T.: Fully automated
shape analysis based on forest automata. In: Sharygina, N., Veith, H. (eds.) Com-
puter Aided Verification - 25th International Conference, CAV 2013, Saint Peters-
burg, Russia, July 13-19, 2013. Proceedings. Lecture Notes in Computer Science,
vol. 8044, pp. 740-755. Springer (2013). https://doi.org/10.1007/978-3-642-39799-
852

Illous, H., Lemerre, M., Rival, X.: A relational shape abstract domain. Formal
Methods Syst. Des. 57(3), 343-400 (2021). https://doi.org/10.1007/S10703-021-
00366-4

Kahsai, T., Kersten, R., Riimmer, P., Schaf, M.: Quantified heap invariants for
object-oriented programs. In: Eiter, T., Sands, D. (eds.) LPAR-21, 21st Interna-
tional Conference on Logic for Programming, Artificial Intelligence and Reasoning,
Maun, Botswana, May 7-12, 2017. EPiC Series in Computing, vol. 46, pp. 368—-384.
EasyChair (2017). https://doi.org/10.29007 /zrct

Kahsai, T., Riimmer, P., Sanchez, H., Schaf, M.: Jayhorn: A framework for verifying
java programs. In: Chaudhuri, S., Farzan, A. (eds.) Computer Aided Verification -
28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 9779, pp. 352-358.
Springer (2016). https://doi.org/10.1007/978-3-319-41528-4_19

Komuravelli, A., Gurfinkel, A., Chaki, S.: Smt-based model checking for recursive
programs. In: Biere, A., Bloem, R. (eds.) Computer Aided Verification - 26th Inter-
national Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 18-22, 2014. Proceedings. Lecture Notes in Computer
Science, vol. 8559, pp. 17-34. Springer (2014). https://doi.org/10.1007/978-3-319-
08867-9.2

Kuru, L., Gordon, C.S.: Safe deferred memory reclamation with types. In: Caires,
L. (ed.) Programming Languages and Systems - 28th European Symposium on
Programming, ESOP 2019, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-
11, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11423, pp. 88-116.
Springer (2019). https://doi.org/10.1007/978-3-030-17184-1_4

Li, J., Lattuada, A., Zhou, Y., Cameron, J., Howell, J., Parno, B., Hawblitzel,
C.: Linear types for large-scale systems verification. Proc. ACM Program. Lang.
6(OOPSLA1), 1-28 (2022). |https://doi.org/10.1145/3527313

Matsushita, Y., Tsukada, T., Kobayashi, N.: Rusthorn: Chc-based verification
for rust programs. In: Miiller, P. (ed.) Programming Languages and Systems -
29th European Symposium on Programming, ESOP 2020, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2020,

https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.23919/FMCAD.2018.8603013
https://doi.org/10.1007/978-3-319-49052-6_13
https://doi.org/10.1007/978-3-319-49052-6_13
https://doi.org/10.1007/978-3-642-39799-8_52
https://doi.org/10.1007/978-3-642-39799-8_52
https://doi.org/10.1007/S10703-021-00366-4
https://doi.org/10.1007/S10703-021-00366-4
https://doi.org/10.29007/zrct
https://doi.org/10.1007/978-3-319-41528-4_19
https://doi.org/10.1007/978-3-319-08867-9_2
https://doi.org/10.1007/978-3-319-08867-9_2
https://doi.org/10.1007/978-3-030-17184-1_4
https://doi.org/10.1145/3527313

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Title Suppressed Due to Excessive Length 19

Dublin, Ireland, April 25-30, 2020, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 12075, pp. 484-514. Springer (2020). https://doi.org/10.1007/978-3-030-
44914-8_18

McCarthy, J.: Towards a mathematical science of computation. In: Information
Processing, Proceedings of the 2nd IFIP Congress 1962, Munich, Germany, August
27 - September 1, 1962. pp. 21-28. North-Holland (1962)

Nicole, O., Lemerre, M., Rival, X.: Lightweight shape analysis based on physi-
cal types. In: Finkbeiner, B., Wies, T. (eds.) Verification, Model Checking, and
Abstract Interpretation - 23rd International Conference, VMCAI 2022, Philadel-
phia, PA, USA, January 16-18, 2022, Proceedings. Lecture Notes in Computer
Science, vol. 13182, pp. 219-241. Springer (2022). https://doi.org/10.1007/978-3-
030-94583-1_11

Peringer, P., Sokova, V., Vojnar, T.: PredatorHP revamped (not only) for interval-
sized memory regions and memory reallocation (competition contribution). In:
Biere, A., Parker, D. (eds.) Tools and Algorithms for the Construction and Analysis
of Systems - 26th International Conference, TACAS 2020, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2020,
Dublin, Ireland, April 25-30, 2020, Proceedings, Part I1. Lecture Notes in Computer
Science, vol. 12079, pp. 408-412. Springer (2020). https://doi.org/10.1007/978-3-
030-45237-7_30

Podelski, A., Wies, T.: Boolean heaps. In: Hankin, C., Siveroni, I. (eds.) Static
Analysis, 12th International Symposium, SAS 2005, London, UK, September 7-9,
2005, Proceedings. Lecture Notes in Computer Science, vol. 3672, pp. 268-283.
Springer (2005). https://doi.org/10.1007/11547662_19

Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: Gupta, R., Amaras-
inghe, S.P. (eds.) Proceedings of the ACM SIGPLAN 2008 Conference on Pro-
gramming Language Design and Implementation, Tucson, AZ, USA, June 7-13,
2008. pp. 159-169. ACM (2008). https://doi.org/10.1145/1375581.1375602

S, S.P., Fedyukovich, G., Madhukar, K., D’Souza, D.: Specification synthesis with
constrained Horn clauses. In: Freund, S.N., Yahav, E. (eds.) PLDI "21: 42nd ACM
SIGPLAN International Conference on Programming Language Design and Imple-
mentation, Virtual Event, Canada, June 20-25, 2021. pp. 1203-1217. ACM (2021).
https://doi.org/10.1145/3453483.3454104

Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-
valued logic. ACM Trans. Program. Lang. Syst. 24(3), 217-298 (2002).
https://doi.org/10.1145/514188.514190

Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Jour-
nal of Mathematics 5(2), 285 — 309 (1955), https://doi.org/10.2140/pjm.1955.
5.285

Toubhans, A., Chang, B.E., Rival, X.: Reduced product combination of ab-
stract domains for shapes. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.)
Verification, Model Checking, and Abstract Interpretation, 14th International
Conference, VMCAI 2013, Rome, Italy, January 20-22, 2013. Proceedings. Lec-
ture Notes in Computer Science, vol. 7737, pp. 375-395. Springer (2013).
https://doi.org/10.1007/978-3-642-35873-9_23

Wesley, S., Christakis, M., Navas, J.A., Trefler, R.J., Wiistholz, V., Gurfinkel,
A.: Inductive predicate synthesis modulo programs. In: Aldrich, J., Sal-
vaneschi, G. (eds.) 38th European Conference on Object-Oriented Pro-
gramming, ECOOP 2024, September 16-20, 2024, Vienna, Austria. LIPIcs,
vol. 313, pp. 43:1-43:30. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik

https://doi.org/10.1007/978-3-030-44914-8_18
https://doi.org/10.1007/978-3-030-44914-8_18
https://doi.org/10.1007/978-3-030-94583-1_11
https://doi.org/10.1007/978-3-030-94583-1_11
https://doi.org/10.1007/978-3-030-45237-7_30
https://doi.org/10.1007/978-3-030-45237-7_30
https://doi.org/10.1007/11547662_19
https://doi.org/10.1145/1375581.1375602
https://doi.org/10.1145/3453483.3454104
https://doi.org/10.1145/514188.514190
https://doi.org/10.2140/pjm.1955.5.285
https://doi.org/10.2140/pjm.1955.5.285
https://doi.org/10.1007/978-3-642-35873-9_23

20 Zafer Esen, Philipp Riimmer, and Tjark Weber

(2024). https://doi.org/10.4230/LIPICS.ECOOP.2024.43, https://doi.org/10.
4230/LIPIcs.ECO0P.2024.43

https://doi.org/10.4230/LIPICS.ECOOP.2024.43
https://doi.org/10.4230/LIPIcs.ECOOP.2024.43
https://doi.org/10.4230/LIPIcs.ECOOP.2024.43

	Finding Universally Quantified Heap Invariants by Horn Clause Transformations

