When GNNs Met a Word Equations Solver:
Learning to Rank Equations

Parosh Aziz Abdulla! [0000-0001-6832—6611] ' \[ohamed Faouzi Atig!, Julie

Cailler310000-0002-6665-8089] ' Chencheng Liang! [0000-0002—4926-8089] 5, |

Phlhpp Rﬁmmerl’Q [0000—0002—2733—"7098]

! Uppsala University, Uppsala, Sweden
2 University of Regensburg, Regensburg, Germany
3 University of Lorraine, CNRS, Inria, LORIA, Nancy, France

Abstract. Nielsen transformation is a standard approach for solving
word equations: by repeatedly splitting equations and applying simpli-
fication steps, equations are rewritten until a solution is reached. When
solving a conjunction of word equations in this way, the performance
of the solver will depend considerably on the order in which equations
are processed. In this work, the use of Graph Neural Networks (GNNs)
for ranking word equations before and during the solving process is ex-
plored. For this, a novel graph-based representation for word equations is
presented, preserving global information across conjuncts, enabling the
GNN to have a holistic view during ranking. To handle the variable num-
ber of conjuncts, three approaches to adapt a multi-classification task
to the problem of ranking equations are proposed. The training of the
GNN is done with the help of minimum unsatisfiable subsets (MUSes) of
word equations. The experimental results show that, compared to state-
of-the-art string solvers, the new framework solves more problems in
benchmarks where each variable appears at most once in each equation.

Keywords: Word equation - Graph neural network - String theory.

1 Introduction

A word equation is an equality between two strings that may contain variables
representing unknown substrings. Solving a word equation problem involves find-
ing assignments to these variables that satisfy the equality. Word equations are
crucial in string constraints encountered in program verification tasks, such as
validating user inputs, ensuring proper string manipulations, and detecting po-
tential security vulnerabilities like injection attacks. The word equation problem
is decidable, as shown by Makanin [33]; while the precise complexity of the prob-
lem is still open, it is know to be NP-hard and in PSPACE [38].

Abdulla et al. [11] recently proposed a Nielsen transformation-based algo-
rithm for solving word equation problems [36]. This algorithm solves word equa-
tions by recursively applying a set of inference rules to branch and simplify the
problem until a solution is reached, in a tableau-like fashion. When multiple word

2 P. Abdulla et al.

equations are present, the algorithm must select the equation to process next at
each proof step. This selection process is critical and heavily influences the per-
formance of the algorithm, as the unsatisfiability of a set of equations can often
be shown by identifying a small unsatisfiable core of equations. At the same time,
the search tree can contain infinite branches on which no solutions can be found,
so that bad decisions can lead a solver astray. The situation is similar to the case
of first-order logic theorem provers, where the choice of clauses to process plays
a decisive role in determining efficiency. In the latter context, several deep learn-
ing techniques have been introduced to guide theorem provers [27,16,44,10,17].
However, for word equation problems, the application of learning techniques for
selecting equations remains largely unexplored.

In this work, we employ Graph Neural Networks (GNNs) [15] to guide the
selection of word equations at each iteration of the algorithm. Our research com-
plements existing techniques for learning branching heuristics in word equation
solvers [11]. We refer to the selection step as the ranking process. For this, we
enhanced the existing algorithm [11] to enable the re-ordering of conjunctive
word equations. The extension preserves the soundness and the completeness
(for finding solutions) of the algorithm. We refer to this extended algorithm as
the split algorithm throughout the paper.

The primary challenge in training a deep learning model to guide the ranking
process lies in managing a variable number of inputs. In our work, this specifically
involves handling a varying number of word equations depending on the input.
Unlike with branching heuristics, which have to handle only a fixed and small
number of branches (typically 2 to 3), the ranking process must handle a variable
number of conjuncts. To address this challenge, we adapt multi-classification
models to accommodate inputs of varying sizes using three distinct approaches.
Additionally, to effectively train the GNNs, we enhance the graph representations
of word equations from [11] by incorporating global term occurrence information.

Our model is trained using data from two sources: (1) Minimal Unsatisfiable
Subsets (MUSes) of word equations computed by other solvers, and (2) data
extracted by running the split algorithm with non-GNN-based ranking heuristics.
MUSes computed by solvers such as Z3 [35] and cvcb [14] help detect unsatisfiable
conjuncts early, enabling prompt termination and improved efficiency. When the
split algorithm tackles conjunctive word equations, each ranking decision creates
a branch in a decision tree. By extracting the shortest path from this tree, we
obtain the most effective sequence of choices, which we then use as training data.

Moreover, we explore seven options that combine the trained model with
both random and manually designed heuristics for the ranking process.

We evaluated our framework on artificially generated benchmarks inspired
by [20]. The benchmarks are divided into two categories: linear and non-linear,
where linear means that, within a single equation, a variable can occur only
once, while non-linear allows a variable to appear multiple times. Note that this
definition of linearity applies to individual equations: in systems with multiple
equations, even if each equation is linear, shared variables can cause a variable
to appear multiple times within the system.

When GNNs Met a Word Equations Solver 3

Finally, we compare our framework with several leading SMT solvers and
a word equation solver, including Z3, Z3-Noodler [19], cvcb, Ostrich [18], and
Woorpje [20]. The experimental results show that for linear problems, our frame-
work outperforms all leading solvers in terms of the number of solved problems.
For non-linear problems, when the occurrence frequency of the same variables
(non-linearity) is low, our algorithm remains competitive with other solvers.

In summary, the contributions of this paper are as follows: (i) We adapt
the Nielsen transformation-based algorithm [11] to allow control over the order-
ing of word equations at each iteration. (ii) We develop a framework to train
and deploy a deep learning model for ranking and ordering conjunctive word
equations within the split algorithm. The model leverages MUSes generated by
leading solvers and uses graph representations enriched with global information
of the formula. We propose three strategies to adapt multi-classification mod-
els for ranking tasks and explore various integration methods within the split
algorithm. (iii) Experimental results demonstrate that our framework performs
effectively on linear problems, with the deep learning model significantly enhanc-
ing performance. However, its effectiveness on non-linear problems is constrained
by the limitations of the inference rules.

2 Preliminaries

We first define the syntax of word equations and the concept of satisfiability.
Next, we explain the message-passing mechanism of Graph Neural Networks
(GNNs) and describe the specific GNN model employed in our experiments.

Word Equations. We assume a finite non-empty alphabet X' and write X* for
the set of all strings (or words) over X. The empty string is denoted by €. We
work with a set I' of string variables, ranging over words in X*. The symbol -
denotes the concatenation of two strings; in our examples, we often write uv as
shorthand for u - v. The syntax of word equations is defined as follows, where
X € I' ranges over variables and c € X over letters:

Formulae ¢ ::= true | e A ¢ Words w =€ | t-w

Equations e ::= w = w Terms ¢t := X | ¢

Definition 1 (Satisfiability of conjunctive word equations). A formula ¢
is satisfiable (SAT) if there exists a substitution w : I' — X* such that, when
each variable X € I in ¢ is replaced by w(X), all equations in ¢ hold.

Definition 2 (Linearity of a word equation). A word equation is called
linear if each variable occurs at most once. Otherwise, it s non-linear.

Graph Neural Networks. Message Passing-based GNNs (MP-GNNs) [23] are
designed to learn features of graph nodes (and potentially the entire graph) by

4 P. Abdulla et al.

iteratively aggregating and transforming feature information from the neighbor-
hood of a node. Consider a graph G = (V, E), with V' as the set of nodes and
E CV xV as the set of edges. Each node v € V' has an initial representation
z, € R™ and a set of neighbors NV, C V. In an MP-GNN comprising 7" message-
passing steps, node representations are iteratively updated. The initial node
representation of v at time step 0 is H) = z,. At each step ¢, the representation
of node v, denoted as H!, is updated using the equation:

Hy = ne(pe({H,' [w e No}), H™Y), (1)

where H!~! is the node representation of u in the previous iteration t — 1, and
node u is a neighbor of node v. In this context, p; : (R™)Vvl — R™ is an
aggregation function with trainable parameters (e.g., an MLP followed by sum,
mean, min, or max) that aggregates the node representations of v’s neighboring
nodes at the ¢-th iteration. Along with this, n; : (R")?> — R” is an update
function with trainable parameters (e.g., an MLP) that takes the aggregated
node representation from p; and the node representation of v in the previous
iteration as input, and outputs the node representation of v at the ¢-th iteration.
In this study, we employ Graph Convolutional Networks (GCNs) [29] to guide
our algorithm due to their computational efficiency to generalize across tasks
without the need for task-specific architectural modifications. In GCNs, the node
representation HY of v at step t € {1,...,T} where T' € N is computed by

H! = ReLUMLP!(mean{H'™' | u € N, U {v}})), (2)

where each MLP® is a fully connected neural network, ReLU (Rectified Linear
Unit) [13] is the non-linear function f(x) = maxz(0,z), and HY = x,,.

3 Split Algorithm with Ranking

Split Algorithm. Algorithm 1, SPLITEQUATIONS, determines the satisfiability
of a word equation formula ¢ by recursively applying inference rules from [11].

The algorithm begins by checking the satisfiability of the conjunctive formula
(Line 2). If all word equations can be eliminated in this way, then ¢ is SAT.
If any conjunct is unsatisfiable (UNSAT), then ¢ is UNSAT. Otherwise, the
satisfiability status remains unknown (UKN). If ¢ is in one of the first two cases,
its status is returned (Line 3).

Otherwise (Line 4), RANKEQS orders all conjuncts using either manually
designed or data-driven methods. Next, the function APPLYRULES matches
and applies the corresponding inference rules to generate branches—alternative
prospective solving paths for the same equation. This step is called the branching
process. Notably, rules R; and Rg generate two and three branches, respectively,
while all the other rules do not cause any branching.

Next, the SPLITEQUATIONS call (Line 9) recursively checks the satisfiabil-
ity of each branch. Let {b1,...,b,} be the set of branches. The formula ¢ has
status SAT if at least one branch b; is satisfiable, UNSAT if all branches are
unsatisfiable, and UKN otherwise.

When GNNs Met a Word Equations Solver 5

Data: A formula ¢

Result: The satisfiability status of ¢ (i.e., SAT, UNSAT, or UKN) and the
simplified version of ¢

1 begin

2 res <— CHECKFORMULASATISFIABILITY (¢)

3 if res # UKN then return res, ¢

4 else

5 ¢s = RANKEQS(¢) // Ranking process
6 Branches = APPLYRULES(¢s) // Branching process
7 uknFlag < 0

8 for b in Branches do

9 resy, Pp=SPLITEQUATIONS(b)

10 if res, = SAT then return SAT, ¢

11 if resy = UKN then uknFlag <+ 1
12 if uknFlag =1 then return UKN, ¢
13 else return UNSAT, ¢

Algorithm 1: SPLITEQUATIONS algorithm.

Since the inference rules apply to the leftmost equation, the performance
of the algorithm is strongly influenced by both the order in which branches
are processed (Line 8) and the ordering of equations in ¢ (Line 5). While the
impact of branch ordering has been studied in [11], this paper explores whether
employing a data-driven heuristic in RANKEQS can enhance termination.

The baseline option to implement RANKEQS is referred to as RE1: Baseline.
It computes the priority of a word equation p using the following definition:

ife=ce
otherwise, if e =u-voru-v=ce
otherwise, if a-u=b-voru-a=v-b

otherwise, if a-u =a-v

i}
I
U = W N

otherwise

where a,b € Y| and u, v are sequences of variables and letters. Smaller numbers
indicate higher priority, assigning greater precedence to simpler cases where sat-
isfiability is obvious. Word equations with the same priorities between 1 and
4 are further ordered by their length (i.e., the number of terms), with shorter
equations taking precedence. For word equations with a priority of 5, the origi-
nal input order is maintained. The newly created equations inherit the ranking
of their parents. We refer to the split algorithm using RE1 for RANKEQS as
DragonLi. The correctness of Algorithm 1 follows directly from the soundness
and local completeness of the inference rules in [11]:

Lemma 1 (Soundness of Algorithm 1). For a conjunctive word equation
formula ¢, if Algorithm 1 terminates with the result SAT or UNSAT, then ¢ is
SAT or UNSAT, respectively.

6 P. Abdulla et al.

AND-OR Tree. The search tree explored by the algorithm can be represented
as an AND-OR tree, as shown in Figure 1. The example illustrates the three
paths, each placing different equations in the first position, generated by the
ranking and branching process to solve the word equation ¢ = (Xb=bXX Ae =
eNX =a), where a,be ¥ and X € T.

Ezxample 1. In the first step, ¢ can be reordered in three distinct ways by prior-
itizing one conjunct to occupy the leftmost position (we ignore the order of the
rest two equations, as their order does not influence the next rule application).
Thus, the root of the tree branches into three paths. For each ranked formula, the
inference rules are then applied to execute the branching process. By iterating
these two steps alternately, the complete AND-OR tree is constructed. Notably,
continuously selecting the leftmost branch that prioritizes Xb = bX X at the
root and applying the left branch of R; may lead to non-termination, as the
length of the word equation keeps increasing. In contrast, prioritizing X = a at
the root results in a solution (UNSAT) at a relatively shallow depth, avoiding the
risk of non-termination caused by further ranking and branching. In this case,
exploring only a single branch during the ranking process suffices to determine
the satisfiability of ¢. This optimal path is highlighted with solid edges.

Xb:b?(X/\e:e/\X:a
Rank{ i - !
Pt v
[Xb=bXXNe=ecANX=a] [e=eAXb=bXXAX=a] [X=aAXb=bXXNe=¢|
SX=bX'" \Rp:X= 5 vy Cx_
Branch Ry v \27 € ‘:'Rz R;: X =aX R;:X=¢
X'b=0bX"bX' b=1b Xb=bXXANX=a aX'=a €e=a
Ne=¢€ Ne=¢€ S AaX'b=0baX'aX' Ab=0D
Rank AbX'=a Ne=a % “u Ne=¢€ Ne=¢€
c e LN [xb=bxx X—a P
CILIC] CIE Bl Laxe J{am—ox LI LI L) G GO
Branch R7»,' \<R7¢R2 ;Rﬁ iRg iRz iR4 R7’,” \\4R7 R7}/l *R7 iRS Rg iRZ Ry iRS iRZ
e UNSAT UNSAT UNSAT .. UNSAT ...

Fig.1: AND-OR tree resulting from the word equation Xb = bX X Ae=€eANX =
a. The formulas enclosed in boxes are generated by RANKEQS, while the formulas
without boxes are obtained from APPLYRULES.

4 Guiding the Split Algorithm

This section details the training and application of a GNN model in Algorithm 1.
We first describe the process of collecting training data, followed by the graph-
based representation of each word equation. Next, we outline three model struc-
tures for ranking a set of word equations. Finally, we discuss methods for inte-
grating the trained model back into the algorithm.

When GNNs Met a Word Equations Solver 7

4.1 Training Data Collection

Assume that ¢ is an unsatisfiable conjunctive word equation consisting of a set
of conjuncts €&.

Definition 3 (Minimal Unsatisfiable Set). A subset U C £ is a Minimal
Unsatisfiable Set (MUS) if the conjunction of U is unsatisfiable, and for all
conjuncts e € U, the conjunction of subset U \ {e} is satisfiable.

We collect training data from two sources: (1) MUSes extracted by other
solvers, including Z3, Z3-Noodler, cvch, and Ostrich; and (2) formulas from the
ranking process that lie on the shortest path from the subtree leading to UNSAT
in the AND-OR trees. A numerical example of these two sources is provided in
Section 5.2.

For training data from source (1), we first pass all problems to DragonLi.
Next, we identify unsolvable problems and forward them to other solvers. If any
solver successfully solves a problem, we select the one that finds a solution in
the shortest time. This solver is then used to extract the MUS by exhaustively
checking the satisfiability of all subsets of the conjuncts. Finally, each conjunct
within a set of word equations is labeled based on its membership in the MUS
and its length.

Formally, given a formula ¢ = e; A -+ A e,, its conjuncts are denoted £ =
{e1,...,en}, and an MUS U C &. The corresponding labels of e; € £ are Y,
{y1,-.-,Yn}, where y; € {0,1}, and their length is denoted |e;|. The label y; is
computed as follows:

1 ife; € U and |e;| = mi eU}),
yi{ if e and |e;| = min ({|e| | } 3)

0 otherwise.

We assign label 1 only to the shortest equation in the MUS, rather than labeling
all MUS equations as 1 and non-MUS equations as 0, because the algorithm
selects only one equation to proceed at each iteration. Our goal is to identify the
most efficient choice. We assume that the shortest equation in the MUS is more
likely to lead to quicker termination, as the branching process aims to reduce
equation length until a form is reached where satisfiability (or unsatisfiability)
can be easily concluded.

To collect training data from source (2), we pass the problems, along with
the MUS extracted from other solvers, to DragonLi. If DragonLi solves the prob-
lem, multiple paths to UNSAT are generated by sequentially prioritizing each
equation at the leftmost position in the ranked word equation.

Subsequently, we export and label each conjunctive word equation along
the shortest path in the subtree leading to UNSAT. Formally, given a set of
conjuncts £ = {ey,...,e,} of a conjunctive word equation, the corresponding
labels Y,, = (y1,...,yn) are computed by

(4)

_)1 ife; in the shortest path of a subtree leading to UNSAT,
i 0 otherwise.

8 P. Abdulla et al.

1O O @ ®Wy @ @D

Equal . Variable Variable Letter Letter
Symbol Variable Letter Occurence 0 Occurence 1 Occurence 0 Occurence 1
XaX =Y || aca = XaY

QRO REPREY
>
® @O ||||@®

Step 1

Fig. 2: The steps for constructing graph representation for the conjunctive word
equations XaX =Y Aaaa = XaY where X,Y are variables and a is a letter.

For both sources, when > y; > 1, we keep the first equation with label
1 and discard the rest equations with label 1 to ensure Y . ;y; = 1. When
> yi =0, we discard this training data due to no positive label.

4.2 Graph Representation for Conjunctive Word Equations

The graph representation of a single word equation is discussed in [11]. However,
since word equations are interconnected through shared variables, ranking them
requires not only local information about individual equations but also a global
perspective. By considering the entire set of word equations collectively, we can
incorporate dependencies and shared structures, improving the ranking process.

To achieve this, we first represent each conjunctive word equation indepen-
dently. Then, we compute the occurrences of variables and letters across all
equations and integrate this global information into each individual graph rep-
resentation. This enriched representation captures both the complexity of indi-
vidual equations and their interactions within the system.

In details, the graph representation of a word equation is defined as G =
(V. E,v=, Vip, Vypar, VR, Vg, VO Vi), where V is the set of nodes, E C V x V
is the set of edges, and v— € V is a special node representing the “=" symbol.
The sets Vi C V and Vi, € V contain letter and variable nodes, respectively.
Additionally, V2 and Vi are special nodes representing letter occurrences and
V\(}M and Vi},, analogously represent variable occurrences.

Figure 2 illustrates the two steps involved in constructing the graph repre-
sentation of the conjunctive word equations XaX = Y A aaa = XaY, where
{X,)Y}CTI'anda€e X:

— Step 1: Inspired by Abstract Syntax Trees (ASTs), we begin to build the
graph by placing the “=" symbol as the root node. The left and right chil-
dren of the root represent the leftmost terms of each side of the equation,
respectively. Subsequent terms are organized as singly linked lists of nodes.

When GNNs Met a Word Equations Solver 9

— Step 2: Calculate the number of occurrences of all terms across the conjunc-
tive word equations. In this example, Occurrence(X) = 3, Occurrence(Y') =
2, and Occurrence(a) = 5. Their binary encodings are 11, 10 and 101 respec-
tively. We encode these as sequentially connected nodes: (Vi},,., Vi) for X,
Vit Vi) for Y, and (Vi V2, V}) for a. Finally, we connect the roots of
these nodes to their corresponding variable and letter nodes.

We chose binary encoding because using unary encoding would significantly
increase the graph size, making computation inefficient. Higher-base encodings
like ternary or decimal tend to blur structural distinctions, i.e., different values
may be represented using the same number of nodes, making it hard for the graph
structure to reflect meaningful differences. Binary encoding strikes a balance. It
keeps the graph size manageable while preserving enough structural information
for our GNN to effectively process word equations at the scale we target.

The rationale behind our other choices of graph representation for word equa-
tions, along with a discussion of alternative representations, is provided in the
repository [2].

4.3 Training of Graph Neural Networks

In the function RANKEQS of Algorithm 1, equations can be ranked and sorted
based on predicted rank scores from a trained model. Given a conjunctive word
equation ¢ = e; A- - -Aey,, the model outputs a ranking, i.e., a list of real numbers
Y, = (41, -.,9n) in which a higher value indicates a higher rank. For example,
for a conjunctive word equation e; A eg, the model might output Y, = (0.3,0.7),
indicating that es; is expected to lead to a solution more quickly than e;, and
the equations should be reordered as ex A e;.

Forward Propagation. To compute this ranking, we first transform the word
equations {ej,...,e,} to their graph representations G = {Gy,...,G,} where
Gi = (V,E,v=, Vi, Wyar, V2, V3, VO, . VAL,). Each node v € V s first assigned an
integer representing the node type: v € J{Vr, Vvar, Vo, Vi, Vi8urs Virar U{v=}.
Those integers are then passed to a trainable embedding function MLP, : Z —
R™ to compute all the initial node representations H? in G;.

Equation (2) defines how node representations are updated. By iterating
this update rule, we obtain the node representations H! = GCN(H} ', E) for
t € {1,...,T}, where the relation FE is used to identify neighbors. Subsequently,
the representation of the entire graph is obtained by summing the node repre-
sentations at time step 7T, resulting in Hg, = 37" | HT.

Then, we introduce three ways to compute the Y,,:

— Task 1: Each graph representation Hg, is given to a trainable classifier
MLP; : R™ — R?, which outputs z; = MLP1(Hg,) = (21, 22). The score
for graph 4 is then computed as y; = softmax(z;); for y; € Y, where

e*1 zZn

softmax(z;) = (Z" s Zf —=5) and softmaz(-); is the first element
j=1 j=1

of softmax(-). Tt represents the probability of the class in the first index.

10 P. Abdulla et al.

— Task 2: All graph representations in a conjunctive word equations are first
aggregated by Hg = %Z;;l Hg,. Then, we compute the score by of each
graph by y; = softmaz(MLPy(Hg,||Hg)), for y; € Y, where MLP; : R?™ —
R? is a trainable classifier and || denotes concatenation of two vectors.

— Task 3: We begin by fixing a limit n of equation within a conjunctive word
equation. For conjunctive word equations containing more than n word equa-
tions, we first sort them by length (in ascending order) and then trim the
list to n equations. Next, we compute scores for resulting equations using
Y, = MLP;5(Hg,, ..., Hg,) where MLP3 : R — R” is a trainable clas-
sifier. Scores for any trimmed word equations are set to 0. If a conjunctive
word equations contains fewer than n word equations, we fill the list with
empty equations to reach n, and then compute Y,, in the same way.

Backward Propagation. The trainable parameters of the model include the
weights of the embedding function MLPy, the classifiers MLP;, MLP5, MLPs3,
and the GCNs. Those trainable parameters are optimized together by minimizing
the categorical cross-entropy loss between the predicted label g; € Y,, and the
true label y; € Y,,, using the equation loss = f% > yilog(9;) where n is the
number of conjuncts in the conjunctive word equations.

4.4 Ranking Options

In Algorithm 1, we introduce seven implementations of RANKEQS, aimed at
evaluating the efficiency of deterministic versus stochastic ranking methods.

— RE1, Baseline: A baseline defined in Section 3.

— RE2, Random: RE1 is first used to compute the priority of each word
equation, and then equations with a priority of 5 are randomly ordered.
This approach aims to add some randomness to the baseline.

— RE3, GNN: Equations ranked at 5 by RE1 are then ranked and sorted us-
ing the GNN model. While this option incurs higher overhead due to frequent
use of the GNN model, it provides the most fine-grained guidance.

— RE4, GNN-Random: Based on RE3, there is a 50% chance of invok-
ing the GNN model and a 50% chance of randomly sorting word equations
with a priority of 5. This option provides insight into the performance when
introducing a random process into GNN-based ranking.

— RE5, GNN-one-shot: Based on the priority assigned by RE1, the GNN
model is used to rank and sort equations with a priority of 5 the first time
they occur, while it is managed by RE1 in subsequent iterations. This option
invokes the GNN only once to minimize its overhead, while still maintaining
its influence on subsequent iterations. Ranking and sorting the word equa-
tions early in the process has a greater impact on performance than doing
them later.

— RE6, GNN-each-n-iteration: Based on RE3, instead of calling the GNN
model each time multiple word equations have priority 5, it is invoked only

When GNNs Met a Word Equations Solver 11

every n = 5000 calls to the RANKEQS function. This option explores a
balance between RE3 and RES5.

— RE7, GNN-formula-length: Based on RE3, instead of calling the GNN
model each time multiple word equations have priority 5, it is invoked only
after n = 1000 calls to the RANKEQS function when the length of the current
word equation does not decrease. This option introduces dynamic control
over calling the GNN model.

5 Experimental Results

This section describes the benchmarks and the methods used for training data
collection. We also compare our evaluation data with leading solvers. The train-
ing and prediction workflow can be find in the repository [5].

5.1 Benchmarks

We initially transformed real-world benchmarks from the non-incremental QF_S,
QF_SLIA, and QF_SNLIA tracks of the SMT-LIB benchmark suite [6], as well
as those from the Zaligvinder benchmark suite [7], into word equation prob-
lems by removing length constraints, boolean operators, and regular expressions.
However, these transformed problems were overly simplistic, as most solvers, in-
cluding DragonlLi, solved them easily. Consequently, we shifted to evaluating
solvers using artificially generated word equation problems inspired by prior re-
search [20,11]. We summarize the benchmarks as follows:

— Benchmark A1l: Given a finite set of letters 7" and a set of variables V', the
process begins by generating individual word equations of the form s = s,
where s is a string composed of randomly selected letters from 7. The max-
imum length of s is capped at 60. Next, substrings in s on both sides of the
equation are replaced n times with the concatenation of m fresh variables
from V. Here |T| = 6, |V| = 10, n € [0,5], and m € [1,5]. Finally, multi-
ple such word equations are conjoined to form a conjunctive word equation
problem. The number of equations to be conjoined is randomly selected be-
tween 1 and 100. Since each replacement variable is a fresh variable from V,
individual equations in the problem remain linear.

— Benchmark A2: This benchmark is generated using the same method as
Benchmark A1; however, different parameters are employed to increase the
difficulty while ensuring that the problem remains linear. Specifically, we use
|T| =26, |[V| =100, n € [0,16], and m = 1.

— Benchmark B: This benchmark is generated by the same method as Bench-
mark A1, except it does not use fresh variables to replace substrings in s. This
causes a single variable to potentially occur multiple times in an equation,
making the problem non-linear. The number of equations to be conjoined is
randomly picked between 2 and 50, and the maximum length of s is capped
at 50. In this benchmark, we use |T| = 10, |[V| =10, n € [0,5], and m = 1.

12 P. Abdulla et al.

— Benchmark C: We first generate a word equation in the following format:
XnaanXn,1 s bX1 = aXanlenflb s X1X1baa

where X, ..., X,, are variables and a and b are letters. Then, we replace
each b with one side of an individual equation generated by Benchmark
Al. Finally, we join the individual equations to form a conjunctive word
equation problem, with the maximum number of conjuncts capped at 100.
This method ensures that the resulting benchmark is highly non-linear.

The statistics of the evaluation data for benchmarks is shown in the reposi-
tory [3].

5.2 Training Data Collection

Table 1 outlines the training data collection. We generate 60,000 problems per
benchmark and check their satisfiability with DragonLi. For instance, Benchmark
A1 contains 1,859 unsolved problems, which are then passed to solvers such as
Z3, Z3-Noodler, cvch, and Ostrich. Together, these solvers identify 181 SAT and
1,678 UNSAT problems, with no single tool able to solve them all.

For UNSAT problems, we extract Minimal Unsatisfiable Subsets (MUSes)
using the fastest solver. This yields 909 problems with extractable MUSes, as
detailed in the repository [4]. We rank word equations within each problem
based on their presence in the MUS and their length, then pass the ranked
problems back to DragonLi. This allows DragonLi to prioritize word equations
appearing in the MUS, enabling it to solve 518 new problems. Problems in
the row Have MUS are transformed into a single labeled data (a conjunctive
word equation). Problems in the row DragonLi using MUS are transformed into
multiple labeled data, each representing a ranking process step on the shortest
path to the solution.

The ranking heuristic’s effectiveness varies with problem benchmarks. For
Benchmarks Al and A2, 57% to 58% of problems with MUSes are solved. In
Benchmark B, the success rate drops to 20%, while for Benchmark C, the heuris-
tic has no effect, solving 0 additional problems. Consequently, no training data
or model was generated for Benchmark C.

6 Experimental Settings

To better investigate the influence of conjuncts order at a conjunctive word
equations, we fixed the branch order for all inference rules. Additionally, we
fixed the inference rule to the prefix version, meaning it always simplifies the
word equation starting from the leftmost term.

Benchmarks were split uniformly into training, validation, and test sets, fol-
lowing standard deep-learning practice. We save the model from the epoch with
the highest validation accuracy.

When GNNs Met a Word Equations Solver 13

Table 1: Number of problems solved by different solvers and having extracted
MUS. The row Other solvers shows the number of solved problem in total by
Z3, Z3-Noodler, cvch, and Ostrich where v/, X, and oo denotes SAT, UNSAT,
and UKN respectively. The row DragonLi using MUS is the number of problems
solved by DragonLi when using MUS to rank word equations in the first iteration.

Type Linear Non-linear
Bench Al A2 B C
Total 60000 60000 60000 60000
DragonLi Solved 9 Solved 00 Solved 9 Solved)
58141 1859 50610 9390 52056 7944 31 59969
Other v X v X v X v X
solvers 181 1678 667 4167 640 7304 383 58259
Have MUS 909 1024 2996 15875
DragonlLi
using MUS 518 594 607 0

All training records and corresponding hyperparameters, such as a hidden
layer size of 128 for all neural networks and number of message passing rounds
are available in our repository [8]. For example, the experimental results for
Benchmark A and Task 2 can be found in [1].

Each problem in the benchmarks is evaluated on a computer equipped with
two Intel Xeon E5 2630 v4 at 2.20 GHz/core and 128GB memory. The GNNs are
trained on NVIDIA A100 GPUs. We measured the number of solved problems
and the average solving time (in seconds), with timeout of 300 seconds for each
proof attempt.

6.1 Comparison with Other Solvers

Table 2 compares the results of three RANKEQS options, RE1, RE2, and RE5
(corresponding to DragonLi, Random-DragonLi, and GNN-DragonLi), against five
solvers: Z3 [35], Z3-Noodler [19], cvch [14], Ostrich [18], and Woopje [20].

The primary metric is the number of solved problems. In Benchmark A1,
GNN-DragonLi achieves the best performance for both SAT and UNSAT prob-
lems. For Benchmark A2, GNN-DragonLi solves the most problems overall (895
problems solved), despite not being the best in either category individually.
GNN-DragonLi outperforms both DragonlLi and Random-DragonLi, showing the
effectiveness of data-driven heuristics over fixed and random heuristics.

As problem non-linearity increases (in Benchmark B), some solvers outper-
form all DragonLi options. For highly non-linear problems (Benchmark C), Drag-
onLi solves almost no problems, regardless of the options. This is an effect entirely
orthogonal to the ranking problem, however: for non-linear equations, substitut-
ing variables that appear multiple times can increase equation length, resulting
in mostly infinite branches in the search tree. It then becomes more important
to implement additional criteria to detect unsatisfiable equations, for instance
in terms of word length or letter count (e.g., [30]), which are present in other

14

Table 2: Number of problems, average solving time, and average split counts for
solvers across four benchmarks. The GNN model used in this table is trained
on Task 2. Columns “UNI”, “CS”, and “CU” indicate uniquely solved, common
SAT, and common UNSAT problems, respectively. The “-” denotes unavailable

P. Abdulla et al.

data. Each benchmark consists of 1000 problems.

Number of solved problems

Average solving time

Bench| Solver (split number)
SAT|UNSAT|UNI|CS| CU | SAT |UNSAT| CS CU
. 5.6 6.5 5.0 5.7
DragonLi | 24 955 | 0 (244.8) |(1085.3)| (94.4) |(126.3)
Random- 5.6 6.3 5.6 5.7
DragonLi | 22| 944 | 0 (198.8) | (932.6) |(137.6)|(180.5)
Al GNN- 13| 678 6.1 7.5 6.1 6.3
DragonLi | 24| 261 | 0 (164.7) |(1974.8)| (96.4) | (60.5)
cved 24 952 1 0.5 0.6 0.1 0.3
73 17 960 0 8.7 0.4 1.1 0.1
Z3-Noodler| 22 939 2 5.7 0.3 4.8 0.1
Ostrich 17 931 0 15.0 5.9 8.0 4.7
Woorpje | 23 744 0 3.0 12.5 0.1 12.2
. 8.5 11.8 4.7
Dragonli | 59 | 824 | 0 (4233.4) [(1231.3)| (27.3) | ~
Random- 24.7 6.2 4.6
DragonLi 4] 806 1 3l o (29779.6)| (210.9) | (27.3))
A2 GNN- 59 336 4 8.4 11.6 5.9)
DragonLi (1330.6) |(1074.1)| (27.3)
cved 67 142 15 0.6 56.0 0.1 -
73 8 870 10 1.1 0.6 0.1 -
Z3-Noodler| 22 7 1 15.4 3.8 0.4 -
Ostrich 13 18 2 24.8 38.8 8.6 -
Woorpje | 0 0 0 -] - - - - -
. 4.9 5.2 4.9 5.3
Dragonli | 11| 805 | 0 (62.5) | (81.5) | (29.2) | (82.4)
Random- 5.0 5.8 5.0 5.2
DragonlLi 10} 894 0 (58.7) | (295.2) |(27.25)| (73.1)
B GNN- 1 821 0 41294 6.5 6.8 6.5 6.8
DragonLi (65.1) | (70.0) |(28.25)| (60.2)
cved 12 915 0 0.1 0.6 0.1 0.7
73 11 859 3 0.1 0.2 0.1 0.1
Z3-Noodler| 24 911 1 4.9 04 1.3 0.4
Ostrich 12 917 2 6.9 3.7 3.3 4.2
Woorpje | 19 330 1 29.5 6.0 0.2 5.0
DragonLi | 2 0 0|-| - (855..15) - - -
Random- 5.0
DragonlLi 2 0 O1-1 - (85.5))))
C GNN-
DragonLi | ~ - S - - - -
cved 0 909 17 | - - 46.9 - 17.3
73 1 821 121 0.8 1.7 0.8 0.1
Z3-Noodler| 7 657 4 111] 1 0.2 94.1 0.1 1.0
Ostrich 0 61 0| - - 77.2 - 27.1
Woorpje 3 62 0|1 65.0 28.4 0.2 223.1

When GNNs Met a Word Equations Solver 15

solvers. DragonLi deliberately does not include such optimizations, as we aim at
investigating the ranking problem in a controlled setting.

For commonly solved problems, the average solving time provides sufficient
data only for Benchmarks Al and B (678 and 294 problems, respectively). In
these cases, DragonLi shows no time advantage, partly due to its implementation
in Python. Re-implementing the algorithm in a more efficient language, such as
Rust [9], can yield over a 100x speedup for single word equation problems.

We also measure the average number of splits in solved problems to evaluate
ranking efficiency. GNN-DragonLi demonstrates fewer average splits compared
to other options, indicating higher problem-solving efficiency in Benchmarks A1l
and B. Our results can be summarized as follows:

1. For linear problems, all DragonLi ranking options perform competitively,
with GNN-DragonLi solving the highest number of problems.

2. For moderately non-linear problems (Benchmark B), DragonLi shows mod-
erate performance, but the ranking heuristic offers limited benefits to GNN-
DragonlLi, leading to reduced performance compared to other options.

3. For highly non-linear problems (Benchmark C), DragonlLi fails to solve most
problems due to limitations in its calculus.

4. The current implementation of DragonLi offers no time advantage for com-
monly solved problems, though significant improvements are achievable by
reimplementation.

Increasing training data for Benchmark A2 from 20,000 to 60,000 allowed
GNN-DragonlLi to solve additional problems, suggesting that larger training sets
may enhance performance. An ablation study on alternative RANKEQS options
is provided as an appendix in the repository [2]. All benchmarks, evaluation
results, and implementation details, including hyperparameters, are available in
our GitHub repository [8].

7 Related Work

Axel Thue [39] laid the theoretical foundation of word equations by studying
the combinatorics of words and sequences, providing an initial understanding of
repetitive patterns. The first deterministic algorithm to solve word equations was
proposed by Makanin [33], but the complexity is non-elementary. Plandowski [38]
designed an algorithm that reduces the complexity to PSPACE by using a form
of run-length encoding to represent strings and variables more compactly dur-
ing the solving process. Artur Jez [28] proposed a nondeterministic algorithm
that runs in O(n log n) space. Closer to our approach, recent research has fo-
cused on improving the practical efficiency of solving word equations. Perrin and
Pin [37] offered an automata-based technique that represents equations in terms
of states and transitions. This allows the automata to capture the behavior of
strings satisfying the equation. Markus et al. [22] explored graph representations
and graph traversal methods to optimize the solving process for word equations,
while Day et al. [20] reformulated the word equation problem as a reachability

16 P. Abdulla et al.

problem for nondeterministic finite automata, then encoded it as a propositional
satisfiability problem that can be handled by SAT solvers. Day et al. [21] pro-
posed a transformation system that extends the Nielsen transformation [31] to
work with linear length constraints.

Deep learning [24] has been integrated with various formal verification tech-
niques, such as scheduling SMT solvers [26], loop invariant reasoning [42,43],
and guiding premise selection for Automated Theorem Provers (ATPs) [27,45].
Closely related work in learning from Minimal Unsatisfiable Subsets (MUSes) in-
cludes NeuroSAT [40,41], which utilizes GNNs to predict the probability of vari-
ables appearing in unsat cores, guiding variable branching decisions for Conflict-
Driven Clause Learning (CDCL) [34]. Additionally, some recent works [12,32]
explore learning MUSes to guide CHC [25] solvers.

8 Conclusion and Future Work

In this work, we extend a Nielsen transformation based algorithm [11] to sup-
port the ranking of conjunctive word equations. We adapt a multi-classification
task to handle a variable number of inputs in three different ways in the rank-
ing task. The model is trained using MUSes to guide the algorithm in solving
UNSAT problems more efficiently. To capture global information in conjunctive
word equations, we propose a novel graph representation for word equations. Ad-
ditionally, we explore various options for integrating the trained model into the
algorithms. Experimental results show that, for linear benchmarks, our frame-
work outperforms the listed leading solvers. However, for non-linear problems,
its advantages diminish due to the inherent limitations of the inference rules. Our
framework not only offers a method for ranking word equations but also provides
a generalized approach that can be extended to a wide range of formula ranking
problems which plays a critical role is symbolic reasoning.

As future work, we aim to optimize GNN overhead, integrate GNN guidance
for both branching and ranking, and extend the solver to support length con-
straints and regular expressions for greater real-world applicability. Our frame-
work can be generalized to handle more decision processes in symbolic methods
that take symbolic expressions as input and output a decision choices.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

Acknowledgement. The computations were enabled by resources provided by the
National Academic Infrastructure for Supercomputing in Sweden (NAISS) at Chalmers
Centre for Computational Science and Engineering (C3SE) and Uppsala Multidisci-
plinary Center for Advanced Computational Science (UPPMAX) partially funded by
the Swedish Research Council through grant agreement no. 2022-06725. The research
was also partially supported by the Swedish Research Council through grant agree-
ment no. 2021-06327, by a Microsoft Research PhD grant, and the Wallenberg project
UPDATE.

When GNNs Met a Word Equations Solver 17

References

1. Dragonli solver experimental report for benchmark a and task 2, accessed: 2025-
05-16, https://github.com/ChenchengLiang/DragonLi/tree/rank/experimental
_results_tables/eval_data_GNN/A1/task_2/model

2. Github repository for the ablastion study, accessed: 2025-06-30,
https://github.com/ChenchengLiang/DragonLi/blob/rank/Appendix/Ablation-
study.md

3. Github repository for the statistics of evaluation data, accessed: 2025-06-30,
https://github.com/ChenchengLiang/DragonLi/blob/rank/Appendix/Statistics-
of-evaluation-data.md

4. Github repository for the statistics of muse, accessed: 2025-06-30,
https://github.com/ChenchengLiang/DragonLi/blob/rank/Appendix/Statistics-
of-MUSes.md

5. Github repository for the workflow, accessed: 2025-06-30,
https://github.com/ChenchengLiang/DragonLi/blob/rank/Appendix/Workflow.md

6. The satisfiability modulo theories library (SMT-LIB), accessed: 2025-05-16,
https://smtlib.cs.uiowa.edu/benchmarks.shtml

7. Zaligvinder: A string solving benchmark framework, accessed: 2025-05-16,
https://zaligvinder.github.io

8. DragonLi github repository branch:rank (2025), accessed: 2025-05-16,
https://github.com/ChenchengLiang/boosting-string-equation-solving-by-
GNNs/tree/rank

9. wordeq_solver (2025), accessed: 2025-05-16. https://github.com/tage64/wordeq
_solver

10. Abdelaziz, 1., Crouse, M., Makni, B., Austil, V., Cornelio, C., Tkbal, S., Kapani-
pathi, P., Makondo, N., Srinivas, K., Witbrock, M., Fokoue, A.: Learning to guide
a saturation-based theorem prover (2021), https://arxiv.org/abs/2106.03906

11. Abdulla, P.A., Atig, M.F., Cailler, J., Liang, C., Riimmer, P.: Guiding word equa-
tion solving using graph neural networks. In: Akshay, S., Niemetz, A., Sankara-
narayanan, S. (eds.) Automated Technology for Verification and Analysis. pp. 279—
301. Springer Nature Switzerland, Cham (2025)

12. Abdulla, P.A., Liang, C., Riimmer, P.: Boosting constrained Horn solving by unsat
core learning. In: Dimitrova, R., Lahav, O., Wolff, S. (eds.) Verification, Model
Checking, and Abstract Interpretation. pp. 280-302. Springer Nature Switzerland,
Cham (2024)

13. Agarap, A.F.. Deep Learning using Rectified Linear Units (ReLU)
arXiv:1803.08375 (Mar 2018). https://doi.org/10.48550/arXiv.1803.08375

14. Barbosa, H., Barrett, C., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., N&tzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvch: A versatile and industrial-
strength SMT solver. In: Fisman, D., Rosu, G. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems. pp. 415-442. Springer International
Publishing, Cham (2022)

15. Battaglia, P.W., Hamrick, J.B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V.F.,
Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Giilgehre,
C., Song, H.F., Ballard, A.J., Gilmer, J., Dahl, G.E., Vaswani, A., Allen, K.R.,
Nash, C., Langston, V., Dyer, C., Heess, N., Wierstra, D., Kohli, P., Botvinick,
M., Vinyals, O., Li, Y., Pascanu, R.: Relational inductive biases, deep learning, and
graph networks. CoRR abs/1806.01261 (2018), http://arxiv.org/abs/1806.01261

18

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

P. Abdulla et al.

Bartek, F., Suda, M.: Neural precedence recommender. In: Platzer, A., Sutcliffe,
G. (eds.) Automated Deduction — CADE 28. Lecture Notes in Computer Science,
vol. 12699, pp. 503-520. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-79876-5“ 30, https://doi.org/10.1007/978-3-030-79876-5_30

Bartek, F., Suda, M.: How much should this symbol weigh? a GNN-advised
clause selection. In: Piskac, R., Voronkov, A. (eds.) Proceedings of 24th In-
ternational Conference on Logic for Programming, Artificial Intelligence and
Reasoning. EPiC Series in Computing, vol. 94, pp. 96-111. EasyChair (2023).
https://doi.org/10.29007 /5f4r, /publications/paper/2BSs

Chen, T., Hague, M., Lin, A.W., Riilmmer, P., Wu, Z.: Decision procedures for path
feasibility of string-manipulating programs with complex operations. Proc. ACM
Program. Lang. 3(POPL), 49:1-49:30 (2019). https://doi.org/10.1145/3290362,
https://doi.org/10.1145/3290362

Chen, Y.F., Chocholaty, D., Havlena, V., Holik, L., Lengal, O., Si¢, J.: Z3-noodler:
An automata-based string solver. In: Finkbeiner, B., Kovécs, L. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems. pp. 24-33. Springer
Nature Switzerland, Cham (2024)

Day, J.D., Ehlers, T., Kulczynski, M., Manea, F., Nowotka, D., Poulsen, D.B.:
On solving word equations using SAT. In: Filiot, E., Jungers, R., Potapov, I.
(eds.) Reachability Problems. pp. 93-106. Springer International Publishing, Cham
(2019)

Day, J.D., Kulczynski, M., Manea, F., Nowotka, D., Poulsen, D.B.: Rule-
based word equation solving. In: Proceedings of the 8th International Con-
ference on Formal Methods in Software Engineering. p. 87-97. FormaliSE
’20, Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3372020.3391556

Diekert, V., Lohrey, M.: Word equations over graph products. In: Pandya, P.K.,
Radhakrishnan, J. (eds.) FST TCS 2003: Foundations of Software Technology and
Theoretical Computer Science. pp. 156—-167. Springer Berlin Heidelberg, Berlin,
Heidelberg (2003)

Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neu-
ral message passing for quantum chemistry. CoRR abs/1704.01212 (2017),
http://arxiv.org/abs/1704.01212

Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge,
MA, USA (2016), http://www.deeplearningbook.org

Horn, A.: On sentences which are true of direct unions of algebras. Journal of
Symbolic Logic 16(1), 14-21 (1951). https://doi.org/10.2307/2268661

Hula, J., Mojzisek, D., Janota, M.: Graph neural networks for schedul-
ing of SMT solvers. In: 2021 IEEE 33rd International Conference
on Tools with Artificial Intelligence (ICTAI). pp. 447-451 (2021).
https://doi.org/10.1109/ICTA152525.2021.00072

Jakubtuv, J., Chvalovsky, K., Olsdk, M., Piotrowski, B., Suda, M., Urban, J.:
ENIGMA Anonymous: Symbol-Independent Inference Guiding Machine (Sys-
tem Description). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) Automated
Reasoning. IJCAR 2020. Lecture Notes in Computer Science, vol. 12167, pp.
448-463. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51054-1 29,
https://doi.org/10.1007/978-3-030-51054-1_29

Jez, A.: Recompression: a simple and powerful technique for word equations (2014),
https://arxiv.org/abs/1203.3705

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

When GNNs Met a Word Equations Solver 19

Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenRe-
view.net (2017), https://openreview.net/forum?id=SJU4ayYgl

Kumar, A., Manolios, P.: Mathematical programming modulo strings.
In: Formal Methods in Computer Aided Design, FMCAD 2021,
New Haven, CT, USA, October 19-22, 2021. pp. 261-270. IEEE
(2021). https://doi.org/10.34727/2021 /ISBN.978-3-85448-046-4“ 36,
https://doi.org/10.34727/2021 /isbn.978-3-85448-046-4_36

Levi, F.W.: On semigroups. Bull. Calcutta Math. Soc 36(141-146), 82 (1944)
Liang, C., Riilmmer, P., Brockschmidt, M.: Exploring representation of horn clauses
using GNNs. In: Konev, B., Schon, C., Steen, A. (eds.) Proceedings of the Work-
shop on Practical Aspects of Automated Reasoning Co-located with the 11th Inter-
national Joint Conference on Automated Reasoning (FLoC/IJCAR 2022), Haifa,
Israel, August, 11 - 12, 2022. CEUR Workshop Proceedings, vol. 3201. CEUR-
WS.org (2022), https://ceur-ws.org/Vol-3201 /paper7.pdf

Makanin, G.S.: The problem of solvability of equations in a free semigroup. Math.
Sb. (N.S.) 103(145)(2(6)), 147-236 (1977)

Marques-Silva, J., Sakallah, K.A.: Grasp: A search algorithm for propo-
sitional satisfiability. IEEE Trans. Computers 48, 506-521 (1999),
https://api.semanticscholar.org/CorpusID:13039801

de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: 2008 Tools and Algo-
rithms for Construction and Analysis of Systems. pp. 337-340. Springer, Berlin,
Heidelberg (March 2008)

Nielsen, J.: Die Isomorphismen der allgemeinen, unendlichen Gruppe
mit zwei FErzeugenden. Mathematische Annalen 78, 385-397 (1917),
https://api.semanticscholar.org/CorpusID:119726936

Pin, J.E., Perrin, D.: Infinite Words: Automata, Semigroups, Logic and Games.
Elsevier (2004), https://hal.science/hal-00112831

Plandowski, W.: Satisfiability of word equations with constants is in PSPACE.
In: 40th Annual Symposium on Foundations of Computer Science (Cat.
No0.99CB37039). pp. 495-500 (1999). https://doi.org/10.1109/SFFCS.1999.814622
Power, J.F.: Thue’s 1914 paper: a translation. CoRR abs/1308.5858 (2013),
http://arxiv.org/abs/1308.5858

Selsam, D., Bjgrner, N.: Neurocore: Guiding high-performance SAT solvers with
unsat-core predictions. CoRR abs/1903.04671 (2019)

Selsam, D., Lamm, M., Biinz, B., Liang, P., de Moura, L., Dill, D.L.: Learning a
SAT solver from single-bit supervision. In: 7th International Conference on Learn-
ing Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net (2019), https://openreview.net/forum?id=HIJMC_iA5tm

Si, X., Dai, H., Raghothaman, M., Naik, M., Song, L.: Learning loop invariants
for program verification. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing
Systems. vol. 31. Curran Associates, Inc. (2018)

Si, X., Naik, A., Dai, H., Naik, M., Song, L.: Code2inv: A deep learning framework
for program verification. In: Computer Aided Verification: 32nd International Con-
ference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part
II. p. 151-164. Springer-Verlag, Berlin, Heidelberg (2020)

Suda, M.: Improving enigma-style clause selection while learning from history. In:
Platzer, A., Sutcliffe, G. (eds.) Automated Deduction — CADE 28. pp. 543-561.
Springer International Publishing, Cham (2021)

20 P. Abdulla et al.

45. Wang, M., Tang, Y., Wang, J., Deng, J.: Premise selection for theorem proving
by deep graph embedding. In: Proceedings of the 31st International Conference on
Neural Information Processing Systems. pp. 2783—2793. NIPS’17, Curran Asso-
ciates Inc., Red Hook, NY, USA (2017)

