Complementable Normal Form of Parametrized
Automata

Franziska Alberl[0009'0001'9940'8799] and Philipp
1,2[0000-0002-2733-7098]

Riimmer
! University of Regensburg, Germany
2 Uppsala University, Sweden

Abstract. Parametrized automata (PA) are an extension of two exist-
ing kinds of automata, symbolic automata and variable automata. In PA,
transitions are labeled with formulas that may contain variables. PA are
a powerful tool for modeling systems over infinite alphabets, but comple-
mentation of PA has been proven to be challenging: not every PA has a
complement, and complementation in general may be non-computable.
This paper presents a new notion of normal form for PA, called com-
plementable normal form (CFPA). CFPA is sufficiently expressive to
completely characterize the class of PA that can be complemented. We
show that all Boolean operations (including complementation) can be
computed efficiently on CFPA, and key problems such as the universal-
ity and non-emptiness problem are decidable for CFPA. Based on CFPA,
we propose a new method for complementing PA.

Keywords: Parametrized Automata - Infinite Alphabets - Complemen-
tation

1 Introduction

Parametrized Automata (PA, [I0]) are an extension of finite-state automata to
infinite alphabets: the transitions are labeled with logical formulas that may
contain (non-reassignable) parameters. As such, PA subsume both symbolic au-
tomata [4] and variable automata [8] and are more expressive than either. As an
example, we may choose the real numbers as an alphabet and allow relations and
operations on the real numbers to occur in transition formulas. Then, PA can
compare two different input letters, or measure the distance between letters. PA
over the real numbers can identify unsorted words, words where the last letter
is largest, or words where all letters fall within a fixed range. PA find applica-
tion in verification tasks, for example verifying invariant properties of Dijkstra’s
self-stabilizing protocol or Quicksort [5].

PA are not closed under complementation: there are languages that can be
represented by PA while their respective complement languages cannot [I]. In
the context of software verification, this is a serious limitation. Proving that a
system satisfies a property often requires showing that no execution exists that

2 F. Alber, P. Riimmer

violates the property, therefore involving complement operations. If the comple-
ment language of a PA exists and can be represented by another PA, we call
that PA complementable. Because the universality problem for PA is undecid-
able, even the simple task of deciding whether a given PA is complementable
might only be possible for limited subclasses of PA.

Contributions. As our first contribution, we present Complementable Normal
Form, a new kind of normal form for PA. The subclass of PA in complementable
normal form (CFPA) is both easy to complement and sufficiently expressive to
represent all complementable PA. In a CFPA, the set of states is partitioned into
three subsets: accepting states, complement-accepting states, and weak states.
If the run of a word terminates in an accepting state, it is part of the PA’s
language. If the run terminates in a complement-accepting state, the word is
part of the complement language. If the run terminates in a weak state, we do
not gain any information. In we formally define CFPA and show that
every complementable PA is equivalent to a CFPA.

As the second contribution, we survey the properties of CFPA, in particular
closure under Boolean operations, efficient computation thereof and decidability
of key decision problems such as universality. We also compare CFPA to the
related concept of strong determinism in We propose CFPA as
the foundation for a new method for complementing PA: every complementable
PA is equivalent to some CFPA, and complementation of CFPA is then straight-
forward. The legwork, therefore, lies in finding an equivalent CFPA.

Our third and most important contribution is found in where we
describe a method for transforming arbitrary complementable PA into CFPA.
The key idea behind the method is to exploit the relationship between words and
accepting parameter assignments that is implicitly defined by a PA. We show
that the method is applicable for all complementable PA.

Related Work. More information on PA can be found in [I0] and [I]. There
are two classes of automata that have a particularly close relationship to PA:
symbolic automata [4], where transitions are labeled using logical formulas, and
variable automata [§], which can compare input letters to non-reassignable vari-
ables for equality and inequality. PA are strictly more expressive than either of
these classes, because symbolic automata cannot compare different input letters,
while variable automata are blind to the logical “structure” of the input alpha-
bet. Variable automata and PA are incomparable to register automata [I1], as
the latter can overwrite stored values while variable automata and PA use fixed
parameter assignments.

PA can be considered a generalization of parametric semilinear data au-
tomata, which are described in [6]. The latter use a specific extension of linear
temporal logic while PA allow a wider range of first-order theories. PA should also
be distinguished from symbolic register automata [3], which combine symbolic
automata [4] with register automata [I1] instead of variable finite automata [§].

We further point out differences to the known notion of ambiguity in au-
tomata [7]. In an unambiguous finite-state automaton, every word has at most

Complementable Normal Form of Parametrized Automata 3

z<y y<z<y+l

=1y
start e start

(a) Az, identifying words whose last letter (b) As, identifying words whose letters
is largest. fall within an interval of length 1.

Fig. 1: Examples of parametrized automata using the theory of real numbers. In
both examples, y denotes the single parameter.

one accepting run (although multiple non-accepting runs are permitted). In
CFPA, by contrast, there is no limit on the number of distinct acceptable runs.
Instead, CFPA have limitations on which states are “reachable” by words that
lie in the CFPA’s language.

2 Parametrized Automata

2.1 Definition and Notation

A finite-state automaton (FSA, [9]) is a tuple A = (X, Q, qo, 9, F), where X is
a finite alphabet, () a set of states, ¢o € @ an initial state, § C Q x X x Q a
transition relation, and F' C @ a set of accepting states. A word w is accepted by
A (i.e., is part of the regular language corresponding to A) if there is a sequence
of transitions (go,w1,q1),---,(Gn-1,Wn,qn) C @, called a run of w, such that
wiwWs ... w, =w and ¢q, € F.

Parametrized automata (PA) extend FSA in the following manner: instead
of letters, the transitions in PA are labeled with logical formulas which also
contain a finite number of variables. PA are therefore equipped to handle infinite
alphabets. A PA is always defined in relation to a fixed underlying first-order
theory T (represented by a structure M), and we require T-satisfiability to be
decidable. We refer to [2] for a brief revision of the terminology.

Examples in this paper use the theory of real numbers as defined in [2], i.e.,
input letters are real numbers and transition formulas may contain the operations
+, — and - and the predicates = and <.

Definition 1 (parametrized automata). Let D be an infinite alphabet and
M = (D,I) be a structure. Let Y = {y1,y2,...} be an infinite set of variables,
or parameters, and x be a distinguished variable representing the current input
letter. Let @ be the set of first-order formulas over M using variables from {zx}U
Y. A parametrized automaton is a tuple A = (M, Q, qo, 0, F), where

— @ is a finite set of states,

— qo € Q is the initial state,

— F C Q is the set of accepting states, and

0 Crin @ X D x Q denotes the finite transition relation.

4 F. Alber, P. Riimmer

Since ¢ is finite, each PA uses only a finite subset of parameters Y4 C Y. For
a PA A, we call a function p : Y4 — D a parameter assignment. The set of all
possible parameter assignments for A is denoted 6 4.

A word w = (wy,...,wg) € D* is accepted by A if there exists a parameter
assignment pu € @4 and a sequence of transitions (qo, ©1,q1)s- - - (Qk—1, Pk, 9k),
called a complete run, such that g € F' and for each i, ¢; evaluates to true when
x is assigned w; and parameters are assigned according to p. The assignment p
is fixed throughout the run, and different words may be accepted using different
parameter assignments.

We write L(A) for the language accepted by A. Two PA A and A’ are equiv-
alent if L(A) = L(A").

A symbolic automaton is therefore a PA in which no variables occur and
predicates have to be drawn from an effective Boolean algebra. It can be shown
(see [1]) that every variable automaton is equivalent to a PA which, aside from
variables and constant symbols, only uses the predicates =, A, V and = (and
vice versa: every such PA is equivalent to a variable automaton). PA over finite
alphabets identify exactly the regular languages, because all possible parameter
assignments can be enumerated.

For a fixed parameter assignment p, A, denotes the symbolic automaton
obtained by replacing each parameter y in A’s transition formulas with its
value p(y). The language L(A) can thus be alternatively described as the union
Unco L(AL)-

We also point out that there is no straightforward way of defining determin-
ism in PA, and introduce two different notions of determinism: we say that A
is deterministic per assignment if each A, is a deterministic symbolic automa-
ton. Because the corresponding algorithms (see [I2]) can be lifted straight from
symbolic automata, every PA can effectively be transformed to a PA that is
deterministic per assignment. Determinism per assignment is a useful property
that we will need later.

Observe that, in a PA that is deterministic per assignment, two different
parameter assignments may still cause a word to complete two different runs. A
different way to define determinism in PA would therefore be to demand that
every word completes exactly one run over all possible parameter assignments.
We call this property “strong determinism,” and will explore the notion in more
detail in

2.2 The Complementation Problem

Throughout this paper, we use - for the complement operation. We say that a
PA A is complementable if there exists another PA A€ such that L(A)¢ = L(A°).
This leads to a first theorem.

Theorem 1. Not every PA is complementable.

Proof. Consider example A; seen in a PA using the theory of real
numbers which randomly assigns a letter w; of a word w = (wy,...,wy) to its

Complementable Normal Form of Parametrized Automata 5

T T

start 90 Q1 q2
”& N\,

Fig.2: Ay, a PA that cannot be complemented.

parameter y and accepts the word if the succeeding letter is smaller than w; = y.
As such, A; identifies unsorted words: L(A;) = {w = (w1, ...,w) € D* | 3i.1 <
i < k Aw; > w;y1}. Note that, by this definition, a word is sorted if its letters
occur in non-decreasing order. An example of a sorted word is (1,2, 3), while
(1,3,2) is not a sorted word. The complement of L(A;) is the set of all sorted
words w = (wy,. .., wy) with the property i < j = w; < w;.

We will prove that a complement automaton identifying L(A;)¢ cannot exist
using a proof by contradiction that has a similar flavor as the pumping lemma
(see [9] section 4.1]). Assume for contradiction that such an automaton A§ exists
and has n states. Let w = (1,2,3,...,2n + 1). Since w € L(A;)¢, there is a
parameter assignment such that w completes an accepting run in (A;),. Then
by a counting argument, we can argue that the run of w in Af traverses some
state ¢ thrice, creating a loop of length greater than 1. This loop is traversed by
a subword (4,4 + 1,...,7 + k) of w where k > 1.

Therefore, the word w’ = (1,2,...,i+k—1,i+k,4,i+1,...,2n+1) obtained
by repeating the found loop completes an accepting run in A{. Now we see why
it was necessary for w to traverse some state thrice: w’ is not a sorted word
because i + k > 4. Therefore, A does not correctly identify the complement
language of A;. A PA identifying all sorted words cannot exist. a0

Other operations and decision problems. It can be shown that PA are closed
under the Boolean operations of union and intersection, using a product con-
struction similar to symbolic automata, see [12]. Here, for both automata to
operate independently we have to ensure that their sets of parameters do not
overlap; this can be achieved by renaming the parameters in one PA. We call
this type of product construction the direct product.

We are interested in two particular decision problems, checking whether a PA
accepts at least one word (the non-emptiness problem) and checking whether a
PA accepts all words (the universality problem). The non-emptiness problem is
decidable for PA because the finite set of paths without loops terminating in
accepting states can be checked for T-satisfiability. The universality problem is
not decidable, a trait that is inherited from variable automata (see [§]).

This, in turn, makes the complementation problem more challenging because
of the following conclusion:

Theorem 2. At least one of the following problems is non-computable:

— Deciding whether an arbitrary PA is complementable.
— For an arbitrary complementable PA, find a complement automaton.

6 F. Alber, P. Riimmer

Proof. Assume that both problems are computable. Then we can solve the uni-
versality problem for PA: the universal language and its complement can both
be represented by PA. If an arbitrary PA is not complementable, it is not univer-
sal. If an arbitrary PA is complementable and its complement can be computed,
then the PA is universal if and only if its complement is empty. a

3 Complementable Normal Form

3.1 Definition and Examples

In PA, not all non-accepting states are created equal: some may be reached both
by words in the language and words in the complement language, depending on
the parameter assignment. Others can only be reached by words in the comple-
ment language, and this distinction is the idea behind complementable normal
form.

Definition 2 (complementable normal form). 4 PA A = (M,Q, qo,0, F)
is in complementable normal form (called a CFPA) if there is a subset F. C Q\ F
such that the automaton C = (M,Q,qo, 0, F.) identifies the complement of A,
i.e., L(C) = L(A)°.

In a CFPA, the set of states @) is therefore partitioned into three pairwise
disjoint subsets:

— F'is the set of accepting states,

— F, is the set of complement-accepting states,

— Any state not in F' or in F, is called a weak state. If the run of a word
terminates in a weak state, we cannot deduce whether the word is part of
L(A) or L(A)°.

We illustrate CFPA using an example, and afterwards show that every com-
plementable PA is equivalent to a CFPA.

Ezample 1. Consider the PA A3, which can be seen in[Figure 1b The automaton
corresponds to the language L3 of all words whose letters fall within an interval of
length 1. The automaton A3 has an accepting state but no weak or complement-
accepting states.

As can be made deterministic per assignment by adding a sink state ¢; and
redirecting a run to ¢; as soon as the condition y < x < y + 1 is broken by a
letter . The new state q; is a weak state.

We can obtain an equivalent CFPA by reasoning about the relationship
between accepted words and the corresponding parameter assignment. For in-
stance, every word in L(Aj3) is accepted if y is assigned the minimum letter of
the word. If on the other hand, y is assigned the minimum letter of a word and
then the condition y < z < y + 1 is broken, we know that that word could not
have been part of L(Ajg).

Based on this observation, we construct the equivalent CFPA C3 seen in
There are no transitions permitting x < y: this forces the value

Complementable Normal Form of Parametrized Automata 7

y<z<y+1 T

r<yVe>y+1 6
start qo a1

(a) The PA Aj, which is deterministic per
assignment.

@ accepting states

7N

y<z<y+1l y<z<y+1

.) weak states T >y >y

~N_7

) (¢) A PA C5 for Lz in complementable
O complement-accepting states normal form. State p3 identifies the com-

lement 1 .
(b) Symbols used in CFPA. plement fanguage

Fig. 3: The language L3 of words with letters within an interval of length 1.

assigned to y to be less than or equal to all letters of the word. If a letter
satisfying = < y is encountered, there is no viable exiting transition and the
run is aborted before proper termination. The state ps3 can only be entered if
y corresponds to the minimum letter and another letter satisfying x > y + 1
has been encountered, thus ps identifies the complement language correctly. If
a letter satisfying « > y + 1 has been encountered before confirmation that y
corresponds to the minimum letter, the weak state ps is entered and can be
exited as soon as there is a confirmation that y corresponds to the minimum
letter. Otherwise, as long as the condition y < = < y + 1 is not violated, we
remain in the accepting states py or p; depending on whether the minimum
letter has already been encountered.

Theorem 3. For every complementable PA, there is an equivalent CFPA.

Proof. Let A= (M,Q,qo,0, F) be a PA and A° = (M, P, po, d., F.) be a comple-
ment automaton of A. Assume without loss of generality that Q N P = @. We
introduce a new initial state ro ¢ Q U P and copy each of the transitions exiting
either g or pg so they also exit rq: let 8 = {(r0,»,7) | (g0, p,7) € 5V (po, p,T) €
0. }. Exactly one of the automata A and A° accepts the empty word ¢, so either
qo € F or pg € F, holds. We need to assign ry to either the language-accepting
or to the complement-accepting set accordingly. Without loss of generality, let
qo € F. Then the PA A’ = (M,QUPU{ro},r9,0Ud. U, FU{ro}) is equivalent
to A and the PA (M, QUPU{rq},ro,dUd. U, F.) is equivalent to A°. Therefore,
A’ is a CFPA. O

Unfortunately, this expressivity comes at a cost that has already been dis-
cussed in there is no algorithm that can both identify and then
complement all complementable PA. The same restriction has to apply to CFPA.

8 F. Alber, P. Riimmer

Corollary 1. There is no algorithm that can either transform a PA into an
equivalent CFPA, or return that no such CFPA exists.

CFPA are closed under union, intersection and complementation, all of which
can be computed efficiently because the direct product of two CFPA is again a
CFPA. In order to show that the universality problem is decidable for CFPA,
we need to mind a little detail: the definition of CFPA requires the existence of
a set of states F,. which accepts exactly the complement language, but knowing
exactly which states belong to F, is not required.

We do not need to communicate information about F. along with a CFPA
A= (M,Q,q,9d, F) because this information can be recovered algorithmically:
we assign a state g to F if the intersection of A and (M, Q, qo, , {q}) is empty.
Note that F, may not be unique, and this algorithm identifies the largest possible
set of complement-accepting states.

At this point, the undecidability of the universality problem throws another
wrench into our gears. Every universal PA is naturally a CFPA whose set of
complement-accepting states is empty. If there was an algorithm for identifying
CFPA, we could take any universal PA, verify that it is a CFPA, identify the set
F, of complement-accepting states and then confirm that no words have runs
terminating in F.. This is a recipe for identifying universal PA, which would
contradict the undecidability of the universality problem.

Corollary 2. There is no algorithm that can decide whether a given PA is a
CFPA.

Ezample 2 (Finite-State Automata). Complementable normal form can also be
applied to finite-state automata (FSA), and can lead to automata that are much
smaller than their deterministic equivalent while still being easy to complement.
For a fixed n € N, consider the automaton A for the regular language (a +
b)*b(a + b)™.

The automaton will be familiar to the reader, because it is a standard exam-
ple to illustrate the exponential blowup when transforming a nondeterministic
finite-state automaton into a deterministic one. Both A and its smallest non-
deterministic complement automaton have O(n) states, but a deterministic FSA
that is equivalent to A will have O(2") states. In the FSA in[Figure 4b] we have
added two additional “tracks” for all words that cannot be accepted by A: one
for words where the nth letter from the last is an a, and one for all words that
have fewer than n letters. The resulting FSA is in complementable form. Just
like deterministic FSA, it can accept either L(A) or L(A)°¢ depending on how
the set of accepting states is chosen. The size of this automaton is still O(n), a
significant improvement compared to deterministic FSA.

3.2 Strong Determinism

Complementation of FSA is easy if the FSA in question is deterministic. In a
deterministic FSA, every word completes exactly one run, so the word is part

Complementable Normal Form of Parametrized Automata 9
a,b

a,b a,b

(a) A finite-state automaton A accepting all words in which the nth letter from the
end is a b.

a7b G/,b a,b
start S0 < @ @ @

I’ \‘ a I’ \‘ G,,b a7b
v Poog v Py Pn
~N_7 ~N_s

(b) This FSA is equivalent to A and in complementable normal form. The states that
are not weak states accept the complement language of A.

Fig. 4: Complementable Normal Form in finite-state automata.

Fig.5: D, an SDPA identifying all words whose first and last letter coincide.

of the complement if and only if its unique run terminates in a non-accepting
state. We will briefly explore what happens if the same notion of determinism is
applied to PA, and why this approach might be inferior to CFPA.

Definition 3. A PA is called strongly deterministic (or an SDPA) if every word
completes exactly one run.

In contrast to determinism per assignment, in an SDPA every word has to
complete a unique run considering all possible parameter assignments. The two
notions are strictly orthogonal: SDPA are in general not deterministic per as-
signment, and vice versa. An example of an SDPA can be seen in

SDPA are a subset of CFPA in which no weak states occur. As a consequence,
SDPA can be complemented in the same manner as deterministic FSA.

Obviously, not every PA is equivalent to some SDPA, because SDPA are
always complementable. In fact, this limitation goes even further, because there
are even some complementable PA that are not equivalent to any SDPA.

10 F. Alber, P. Riimmer

Theorem 4. Strongly deterministic PA form a strict subset of complementable
PA. There are complementable PA that do not have a strongly deterministic
equivalent.

Proof. We claim that the language K = {w = (w1,...,wg) € D* | <i<j <
k:|w; —w;| > 1}, which is the complement of L3 and therefore recognized by a
PA, cannot be recognized by any SDPA.

Consider the sequence of words ((1, %, A %, 1+ ﬁ))mnel\h whose first few

elements are (1, %, 2), (1, %, %, 1+ %), (1, %, %, i, 1+ %)7 -

Assume that there is an SDPA A identifying K, and let A consist of k states.
Each word of the sequence has to be accepted by A upon reaching the last letter,
and all runs of prefixes have to terminate in non-accepting states. We make use
of a peculiar property of SDPA: If two words w and v complete runs in A using
the parameter assignments ., and ., respectively, and if w is a prefix of v, then
the runs of win A, and A, have to be identical. It can be shown by induction
(which we skip here; the full version of the proof is available in [I]]) that all runs
of proper prefixes of the sequence, which have the form (1, %, R %) for some n,
have to traverse n distinct states in A.

The final state is accepting and therefore cannot coincide with any state that

has been previously traversed. Therefore, the run of the word (1, %, e %, 14
—L) traverses n + 1 distinct states.

A run of the word (1, %, cee %, 1+ ﬁ) needs to traverse k+1 distinct states,
contradicting the assumption of A only having k states. a

In conclusion, SDPA only represent a fraction of all complementable PA.
Therefore, CFPA are the superior choice, as they are both strictly more expres-
sive and share the same pleasant properties regarding closure under Boolean
operations and decidability of important decision problems.

4 Construction of CFPA

Idea. We will now present a method for transforming arbitrary complementable
PA into CFPA. We generalize the approach of where the relationship
between words and accepting parameter assignments was exploited.

For the algorithm, we introduce two new concepts:

Definition 4 (Skolem automaton). Let A be a PA. Let B be a PA such that:

— B is universal,

— the parameters of A are a subset of the parameters of B: Y4 C Yg, where
Y4 and Yp are the finite sets of parameters used by A resp. B, and

— for allw e L(A), if w e L(B,) for some u € © then w € L(A,).

Then B is called a Skolem automaton of A.

We can use Skolem automata for complementation thanks to the contra-
positive of the third statement: if a word is accepted by B using a parameter
assignment u, but is not accepted by A, this implies that the word is part of
the complement language.

Complementable Normal Form of Parametrized Automata 11

Definition 5 (synchronized product). Let A = (M,Q, qo,04,F4) and B =
(M, P,po,d0p, FB) be two PA whose parameter sets may intersect, i.e., Y4 N
Yp # @. Let I C Fa x Fp be arbitrary, and let § = {((q,p), 1 A 2, (d',p")) |
(q,01,q9") € 64, (p,p2,p) € 6p}. Then the PA (AQB, F) := (M,Qx P, (qo,po), 0,
F) is called a synchronized product of A and B. The parameter set of (AQ B, F)
18 YA U YB-

The synchronized product allows a PA and its Skolem automaton to exchange

information. Constraints placed on the parameter assignment by B also have to
hold in A.

Theorem 5. Let A = (M,Q,qo,9,Fa) be a PA that is deterministic per as-
signment. Let B = (M, P,po, 8, Fg) be a Skolem automaton of A. Then the
synchronized product (A ® B,Fy x Fp) is equivalent to A and is in comple-
mentable normal form. The complement of L(A) is accepted by the set of states
(Q \ FA) X FB.

Proof. Let w € L(A). Since B is universal, there is a parameter assignment
p € O such that w € L(B,,). By the definition of B, this means w € L(A,,), and
therefore, L(A) C L((A® B, F4 x Fg)).

Let now w € L((A® B, Fs X Fig)). Then there exists a parameter assignment
p such that w € L(B,,) and w € L(A,). Therefore, L((A® B, Fa x F)) C L(A).
This concludes the proof that L(A) = L((A® B, Fa X Fp)).

In order to prove that (A® B, F4 X Fj) is in complementable normal form,
it is sufficient to prove that (A® B, (Q \ Fa) x Fg) identifies the complement of
L(A). Let w € L(A)°. As B is universal, there is a parameter assignment y € O
such that w € L(B,). Since A is deterministic per assignment, w completes a
run in A, which terminates in a non-accepting state since w ¢ L(A). Therefore,
w completes a run in (A ® B),, which terminates in (Q \ Fa) x Fg.

Vice versa, let a word w terminate in (p, b) € (Q\Fa)x Fp for some parameter
assignment p. Thus, w € L(B,,). If w were in L(A), then the the third condition
would force the run of w in A, to terminate in an accepting state. However,
because w terminates its run in A, in a non-accepting state, w cannot lie in

L(A). 0

Ezample 3. illustrates the method with an example based on Ay seen
in the automaton which accepts all words in which the last letter is
largest.

Applicability. According to for every complementable PA, there is
an equivalent CFPA. A similarly structured proof can show the existence of a
Skolem automaton for every complementable PA:

Proposition 1. For every complementable PA A, a suitable Skolem automaton
B exists.

Proof. The product automaton in the proof of[Theorem 3|is a Skolem automaton
when picking the set of accepting states F'U F. U {rg}. O

12 F. Alber, P. Riimmer

T=y TFy
TFy
start .G
x=y
(a) A5, which is equivalent to As and (b) B, a suitable Skolem automaton for

deterministic per assignment. Aj.

start

(c) The synchronized product of A5 and B, a CFPA.

Fig.6: An example of our method. Weak states are indicated by dashed lines,
complement-accepting states are half blue and accepting states are half red and
half blue and marked as accepting.

Skolem automata are not unique: for example, a CFPA equivalent to A, can
also be obtained by demanding that y is the maximum letter of the word.

A Skolem automaton has to fulfill three properties, which each can be con-
firmed with widely differing degrees of difficulty: the universality problem is
undecidable, while Y4 C Yp is easily checked. The third property can be verified
as well, hinging on the complexity of the non-emptiness problem.

Proposition 2. Given a PA A that is deterministic per assignment and a uni-
versal PA B, it can be decided whether B is a Skolem automaton of A.

Proof. We need to prove that for every w € L(A) and every parameter assign-
ment p, w € L(B,) implies w € L(A,). The condition is breached if there is
aw € D* and a p such that w € L(A) N L(B,) N L(A,)¢. Such a w exists if

and only if the intersection of L(A) and J,cq(L(By) N L(A,)°) is non-empty,

Complementable Normal Form of Parametrized Automata 13

(L(B,) N L(A,)°) corresponds to the synchronized product of B and
O

HEO

and |
A.

5 Conclusion

In our search for new approaches to the complementation problem for PA, we
have identified CFPA as a formalism that sits in a particularly sweet spot. CFPA
are powerful enough to completely characterize the class of complementable PA,
yet at the same time complementation of CFPA is easy. Their computational
properties are pleasant and comparable in complexity to those of SDPA, a model
that is far more restrictive.

Because of the undecidability of the universality problem for PA in general,
per there can be no algorithm that either complements a given PA
or returns that a complement PA does not exist. Because of this restriction, we
have closely monitored the effects of This has allowed us to identify
the parts of the problem that are decidable to a reasonable degree.

We have shown that every complementable PA has a Skolem automaton, and
studied how to confirm whether a given PA is a Skolem automaton (barring the
universality property, which is of course undecidable). Given a Skolem automa-
ton, the synchronized product with the PA as well as the complement of the
PA can be constructed. The big, remaining, unmendable hole in the method is
therefore the construction of suitable Skolem automata.

This is interesting, because the relationship between complementable PA and
Skolem automata goes both ways: a PA is complementable iff it has a Skolem au-
tomaton as in[Definition 4] The complementation problem can thus be rephrased
“compute a Skolem automaton, or return that no such Skolem automaton ex-
ists.” We point out that one part of the problem might be computable, as long
as the other part is not. Future research might identify the computable part, or
establish that both parts of the problem are non-computable.

The gap can also be closed with an application-oriented approach. We are
delighted to announce that a library for PA is currently being implemented. The
library will support all operations and algorithms described in this paper, make
PA more accessible for applications and open up new avenues of research.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

Acknowledgement. This work was supported by the Swedish Research Council

through grant 2021-06327, and by the Knut and Alice Wallenberg Foundation through
project UPDATE. We are grateful for the useful feedback by the anonymous referees!

References

1. Franziska Alber. Parametrized automata over infinite alphabets: Properties and
complementation. Master Thesis, 2024.

14

10.

11.

12.

F. Alber, P. Riimmer

. Aaron R. Bradley and Zohar Manna. The calculus of computation - decision pro-

cedures with applications to verification. Springer, 2007.

Loris D’Antoni, Tiago Ferreira, Matteo Sammartino, and Alexandra Silva. Sym-
bolic register automata. In Isil Dillig and Serdar Tasiran, editors, Computer Aided
Verification - 31st International Conference, CAV 2019, New York City, NY, USA,
July 15-18, 2019, Proceedings, Part I, volume 11561 of Lecture Notes in Computer
Science, pages 3—21. Springer, 2019.

Loris D’Antoni and Margus Veanes. The power of symbolic automata and trans-
ducers. In Rupak Majumdar and Viktor Kuncak, editors, Computer Aided Ver-
ification - 29th International Conference, CAV 2017, Heidelberg, Germany, July
24-28, 2017, Proceedings, Part I, volume 10426 of Lecture Notes in Computer Sci-
ence, pages 47-67. Springer, 2017.

Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Com-
mun. ACM, 17(11):643-644, 1974.

Diego Figueira and Anthony Widjaja Lin. Reasoning on data words over numeric
domains. In Christel Baier and Dana Fisman, editors, LICS ’22: 87th Annual
ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2 -
5, 2022, pages 37:1-37:13. ACM, 2022.

Jonathan Goldstine, Martin Kappes, Chandra M. R. Kintala, Hing Leung, Andreas
Malcher, and Detlef Wotschke. Descriptional complexity of machines with limited
resources. J. Univers. Comput. Sci., 8(2):193-234, 2002.

Orna Grumberg, Orna Kupferman, and Sarai Sheinvald. Variable automata over
infinite alphabets. In Adrian-Horia Dediu, Henning Fernau, and Carlos Martin-
Vide, editors, Language and Automata Theory and Applications, 4th International
Conference, LATA 2010, Trier, Germany, May 24-28, 2010. Proceedings, volume
6031 of Lecture Notes in Computer Science, pages 561-572. Springer, 2010.

. John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to au-

tomata theory, languages, and computation, 3rd Edition. Pearson international
edition. Addison-Wesley, 2007.

Artur Jez, Anthony W. Lin, Oliver Markgraf, and Philipp Riimmer. Decision
procedures for sequence theories. In Constantin Enea and Akash Lal, editors,
Computer Aided Verification - 35th International Conference, CAV 2023, Paris,
France, July 17-22, 2023, Proceedings, Part II, volume 13965 of Lecture Notes in
Computer Science, pages 18-40. Springer, 2023.

Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput.
Sci., 134(2):329-363, 1994.

Margus Veanes, Peli de Halleux, and Nikolai Tillmann. Rex: Symbolic regular
expression explorer. In Third International Conference on Software Testing, Veri-
fication and Validation, ICST 2010, Paris, France, April 7-9, 2010, pages 498-507.
IEEE Computer Society, 2010.

	Complementable Normal Form of Parametrized Automata

