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Abstract. We investigate the termination problem of regular transition
systems, i.e., of transition systems whose transition relations can be rep-
resented by finite-state automata. Leveraging this automata-theoretical
perspective, we propose a new, efficient approach to termination anal-
ysis. Our method encodes termination arguments, called statements, as
words in an auxiliary language, enabling the verification of whether con-
figurations satisfy those termination arguments via an interpretation au-
tomaton. The choice of a fixed interpretation automaton enables the
synthesis of new automata dedicated to searching for statements and ver-
ifying properties within any given regular transition system. The central
contribution of this work is the construction of a specialized finite-state
automaton that recognizes statements ensuring the system’s termina-
tion according to predefined conditions. Depending on the fragment of
regular transitions considered, we define two sets of sufficient conditions
for termination and provide an automata-based method to verify them
within a given regular transition system.

1 Introduction

We consider the termination problem of transition systems. The termination
problem is an instance of a liveness property and is, in general, undecidable,
as illustrated by the halting problem [15]. Consequently, we must either identify
suitable fragments of transition systems that retain decidability, or rely on sound
but incomplete procedures that deliver good results in practical applications. In
this paper, we examine fragments of regular transition systems (RTS), which
can be viewed as an instance of parameterized transition systems. The transition
relation in an RTS is modeled by a length-preserving transducer, with the length
of the initial configuration acting as an implicit parameter of the system.

The standard approach for proving termination involves over-approximating
the transition relation with a well-founded relation. However, finding such a
relation efficiently is often challenging. To tackle this problem, we leverage an
automata-theoretical framework. Recently, a new perspective on analyzing RTS
was introduced by Welzel-Mohr [17], which we adopt. It reasons about properties
of the configurations of the system. Those properties are represented by words
over an auxiliary alphabet and called statements. To verify whether a given
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configuration satisfies a statement, a fixed interpretation automaton is used. In
this way, the entire verification process is described by automata. The synthesis
of the relevant automata leads to a framework that transforms the process of
invariant synthesis into automata queries, in particular checking non-emptiness.

In previous work, this approach was utilized only for analyzing safety prop-
erties. In order to apply the framework for termination analysis, we adapt the
alphabet to reason about relations between configurations. In particular, then
a statement can be viewed as a relation by considering the set of configura-
tions that satisfy the statement according to the interpretation automaton. The
search for well-founded relations is incorporated into the synthesized automa-
ton. The challenge is no longer the automation of the process, but rather to
find suitable preconditions that the synthesized automata should search for. We
give two example automata that verify (1) that a regular transition system is
lexicographically ordered, or (2) that it is letter-wise ordered, which both im-
ply termination. The approach is sound for any given RTS and complete for
the respective fragment. Our work can be seen as a recipe for transferring the
approach to other areas.

Related Work Our work lies within the broader field of regular model
checking, which was first developed by Bouajjani et al. [7]. In general, ques-
tions in regular model checking can be formulated as second-order formulae over
some automatic structure [12]. The most common focus is on safety proper-
ties, that is, whether error states can be reached from initial states. A typical
approach involves searching for inductive invariants, e.g., via abstract regular
model checking [6] or active automata learning using the L∗ algorithm [5,8]. An
alternative approach, utilized and extended in this paper, was recently intro-
duced by Welzel-Mohr [17], determining inductive invariants with the help of
interpretation automata.

In contrast, liveness properties, such as termination, have received less
attention in regular model checking so far. Podelski et al. [13] introduce the no-
tion of a transition invariant as a tool to prove termination of programs, which
directly applies to transition systems as well. A combination with predicate ab-
straction for automation is described in [14]. A key result shown is that a program
terminates if and only if a disjunctively well-founded transition invariant exists,
which is a generalization of well-founded relations. However, in our work, we are
only concerned with ordinary well-founded relations.

To compute transition invariants of parameterized transition systems, it
is necessary to over-approximate the transitive closure of the transition relation,
which already by itself is a hard problem. An approach that avoids this construc-
tion is described by Abdullah et al. [3], where instead backward calculation is
used to determine which states necessarily lead to terminating states, leveraging
existing methods for safety analysis. Closely related to well-founded relations is
the concept of ranking functions. Fang et al. [10] use a heuristic called projection
& generalize to construct a ranking function, which is intended to verify that the
transition relation eventually makes progress towards termination by reducing
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the rank of the current state at each step. Lin et al. [11] use a CEGAR approach
to show termination of parameterized transition systems modeling two-player
reachability games, applying both Angluin’s L∗-algorithm and SAT-solving.

Structure of the Paper In section 2, we give preliminaries on finite-state au-
tomata, regular transition systems, relations and fix some notation. We recall
the approach from [17] in section 3, which is initially used to prove safety prop-
erties. Our main contribution is to carry over the approach from [17] to liveness
properties, more precisely to termination analysis. In section 4, we consider two
fragments of regular transition systems that we prove terminating: (1) lexico-
graphically ordered systems and (2) letter-wise ordered systems. Both sections
follow a common pattern of identifying preconditions that are sufficient to prove
termination and then constructing an automaton that searches for witnesses for
these conditions. We conclude in section 5 with future work.

2 Preliminaries

Finite-State Automata We assume basic familiarity with finite automata.
A non-deterministic finite-state automaton (NFA) is a tuple A = (QA, ΣA, sA,
δA, FA), where QA is the set of states, ΣA the finite alphabet, sA ∈ QA the
initial state, δA ⊆ QA ×ΣA ×QA the transition relation, and FA ⊆ QA the set
of accepting states. We will stick to this subscript notation for the corresponding
components of an automaton A. The language accepted by A is denoted by
L(A). We assume that for all p ∈ QA, s ∈ ΣA, there exists a q ∈ QA such that
(p, s, q) ∈ δA, since otherwise we may simply introduce a fresh non-accepting
“sink state”. For the sake of presentation we will not explicitly depict the sink
state in figures.

A Σ1-Σ2-transducer for two alphabets Σ1, Σ2 is an NFA with alphabet Σ1×
Σ2. Let T be a Σ1-Σ2-transducer. Let u = u1 · · ·un ∈ Σ∗

1 , v = v1 · · · vn ∈ Σ∗
2 be

two words, then we write u ⊗ v for the word (u1, v1) . . . (un, vn) in (Σ1 × Σ2)
∗

and ( ui
vi
) for its letters instead of (ui, vi). In case u ⊗ v ∈ L(T ), we interpret

u as the input and v as the output of T . If Σ1 = Σ2 = Σ, then T defines a
relation RT on Σ∗ by (u, v) ∈ RT :⇔ u⊗v ∈ L(T ).3 When writing u⊗v, we we
implicitly assume that the lengths of the words u, v is equal. Furthermore, our
notion of transducer does not allow ε-transitions, neither in the input nor in the
output, as opposed to other definitions from the literature.

Regular Transition Systems

Definition 1 (regular transition system[1][2]). A regular transition system
(RTS) is a tuple (Σ, T ), where Σ is a finite alphabet and T is a Σ-Σ transducer.
We call T the transition relation, the letters s ∈ Σ states, words w ∈ Σ∗ con-
figurations and the i-th position of a configuration an agent. In other words, a
configuration is a finite sequence of the current states of agents.
3 We write “A :⇔ B” to denote that A is defined to be equivalent to B.
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Fig. 1: Transition relation T for token passing

Remark 1 (initial configurations). We consider termination from any configu-
ration. Therefore, we do not specify initial configurations. In this regard, our
definitions deviate from other standard terminology also found in the literature,
which usually emphasizes the origin from transition systems and then addition-
ally demands the initial configurations and transition relation to be a regular
expression.

Let (Σ, T ) be a RTS, a = a1 . . . an ∈ Σ∗, b = b1 . . . bn ∈ Σ∗ two words. Then
we write a →T b, or simply a → b if T is clear from the context, if we have( a1

b1

)
. . .
( an

bn

)
∈ L(T ) and call it a transition from a to b. The number of agents

in a configuration is invariant under the transition relation, since transducers
are defined to be length-preserving in our setting. One may view the number
of agents as a parameter, making RTSs an instance of parametrized transition
systems. Furthermore, since our alphabet is finite, there are at most |Σ|n < ∞
reachable configurations from any initial configuration w ∈ Σn for n agents.
We call transition systems in which for any configuration the set of reachable
configurations is finite, weakly-finite [9].

Example 1 (Token passing). Let Σ = {0, T}. Consider the transition relation de-
scribed by the Σ-Σ-transducer depicted in Figure 1. To illustrate the transition
system, we also give all transitions by hand, starting from a specific configura-
tion T000 and the parameter value n = 4:

T000 → 0T00 → 00T0 → 000T (1)

The transition relation can equivalently be defined using the corresponding reg-
ular expression:

( 00 )
∗
( T0 ) (

0
T ) ( 00 )

∗
. (2)

The RTS (Σ, T ) models a token passing protocol. The state T represents that at
this position there is a token and 0 represents that there is none. The transition
relation T models that a token is handed over from the i-th to the (i + 1)-th
agent, starting at the first and ending in the last. The transition relation assumes
that there exists only one token (otherwise there are no transitions). The token
passing protocol serves as an easy running example of a terminating RTS.

Relations We define some terms and notation on relations for later use.

Definition 2. Let R ⊆ S × S be a relation. We call R
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– reflexive if for all x ∈ S, we have (x, x) ∈ R.
– transitive if for all x, y, z ∈ S with (x, y), (y, z) ∈ R, we have (x, z) ∈ R.
– irreflexive if for all x ∈ S, we have (x, x) /∈ R.
– total if for all x, y ∈ S with x ̸= y, we have (x, y) ∈ R or (y, x) ∈ R.
– partial if it is not total.
– preorder if it is reflexive and transitive.

Remark 2. Let ≼ be a preorder on a set S. Then

a ≺ b :⇔ a ≼ b ∧ ¬(b ≼ a). (3)

defines an irreflexive, transitive relation and every irreflexive, transitive relation
arises in this way. This motivates the following notation.

Notation 1. Let R ⊆ S × S be a relation. For x, y ∈ S, we write

– x ≥R y if (x, y) ∈ R.
– x >R y if (x, y) ∈ R and (y, x) /∈ R.
– x =R y if (x, y), (y, x) ∈ R.

We abbreviate ≥i, >i,=i for ≥Ri
, >Ri

,=Ri
for a relation Ri with index i.

As seen in [13], well-founded relations play a crucial role for termination.

Definition 3 (well-founded [16]). Let S be a set. A relation R ⊆ S × S is
called well-founded if there exists no sequence (sn)n∈N such that (sn, sn+1) ∈ R
for all n ∈ N.

Lemma 1. Let R be an irreflexive, transitive relation on a finite set S. Then R
is well-founded.

Proof. Assume for a contradiction that R is not well-founded, i.e., there exists
a sequence (wi)i∈N such that (wi, wi+1) ∈ R for all i ∈ N. Since S is finite there
exists i, j ∈ N such that i ̸= j and wi = wj . Without loss of generality we may
assume i < j. Then transitivity of R along wi ≥R wi+1 ≥R · · · ≥R wj implies
wi ≥R wj = wi which contradicts irreflexivity of R.

3 Properties of RTS as Statements

We revise the approach presented in [17] for reasoning about configurations in
an RTS. Statements are formulated as words over an auxiliary alphabet and an
interpretation automaton justifies whether a configuration satisfies a statement.

Fix a new (finite) alphabet Γ for statements. A statement is then a word
I ∈ Γ ∗. An interpretation automaton is a Σ-Γ -transducer V. A statement I ∈ Γn

holds in a configuration w ∈ Σn if and only if w ⊗ I ∈ L(V). For Γ = 2Σ , an
example of an interpretation automaton is depicted in Figure 2 by VTrap. The
labels “w ∈ I” and “w /∈ I” summarize the exponentially many transition labels
{(w, I) ∈ Σ × 2Σ | w ∈ I}, respectively {(w, I) ∈ Σ × 2Σ | w /∈ I} and the
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w /∈ I

w ∈ I
true

Fig. 2: The interpretation automaton VTrap

transition “true” is always available. In natural language VTrap checks whether
at least one of the states of the configuration is included in the corresponding
set (at same position) in the statement. We can define the set of configurations
that satisfy I as {w ∈ Σ∗ | w ⊗ I ∈ L(V)}. That way, I naturally describes an
invariant candidate.

Example 2. We come back to our token passing example. Consider the word
I = {T}{T}{T}{T} ∈ (2Σ)

∗. It can be easily verified that Σ4 \ {0000} is the
set of all configurations that satisfy I in the interpretation VTrap. In natural
language, I can be reformulated as “has at least one token”.

The main result of this construction is now that we can automatically verify
whether a statement holds (for certain words) and therefore also automatically
search for statements that have certain properties. In the work of [17], this
is done for inductive statements. In other words, the statement alphabet and
the interpretation automaton yield a set of invariant candidates (one for each
statement) and we need to search within this set for actual invariants with the
desired properties, like being inductive. The challenge in this approach is no
longer the automation of the search but rather finding appropriate alphabets for
statements and interpretations. Ideally, one tries to avoid a choice of alphabet
and interpretation that is specific for one single RTS.

4 Termination of RTS

In this section we show how the approach from [17] can be used to show termina-
tion of regular transition systems. The proofs of this section are straightforward
and rather technical, hence they are deffered to the appendix.

Definition 4 (Termination of a RTS). Let (Σ, T ) be an RTS. We say that
(Σ, T ) terminates on w0 ∈ Σ∗ if there exists no sequence (wi)i∈N such that
wi ⊗wi+1 ∈ L(T ) for all i ∈ N0. We say that (Σ, T ) terminates if it terminates
for all w0 ∈ Σ∗.

Theorem 1. The termination problem of RTS is undecidable in general.

Proof. Consider the halting problem whether a turing machine M halts on input
x. This can be reduced to termination of a turing machine M ′ using at most N
tape cells on inputs of at most N cells of memory for each N ∈ N uniformly.
M ′ can be modelled by a length preserving transducer T . Hence, M ′ halts for
all N ∈ N and every input if and only if the RTS (Σ, T ) terminates where Σ
represents both the tape content and the state of the turing machine M ′.
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As a first step, we exploit the fact that regular transition systems are weakly-
finite. Therefore, it is sufficient for termination that there exists an irreflexive,
transitive relation on the set of reachable configurations for each value of the
parameter, over-approximating the transition relation. This relation is then im-
mediately well-founded by Lemma 1. Formally, we have the following Theorem.

Theorem 2. Let (Σ, T ) be an RTS, n ∈ N. Let R be a well-founded relation that
over-approximates the transition relation, i.e. (Σn×Σn)∩RT ⊆ (Σn×Σn)∩R.
Then the RTS terminates on any input w ∈ Σn.

In order to reason about relations, we consider Σ × Σ as underlying alphabet
and Γ = 2Σ×Σ as alphabet for statements. For a fixed interpretation automaton
V, a statement I ∈ Γ ∗ then defines a relation on the configurations by

RI = {(w1, w2) ∈ Σ∗ ×Σ∗ | ((w1 ⊗ w2)⊗ I) ∈ L(V)} ⊆ Σ|I| ×Σ|I|. (4)

We give two frameworks to prove termination of fragments of regular transition
systems in the following.

4.1 Lexicographically Ordered Systems

We first treat lexicographically ordered systems. Intuitively, this is how words
in a dictionary are arranged.

Lemma 2 (lexicographical order). Let RΣ ⊆ Σ × Σ be a relation on Σ.
Then RΣ induces a relation Rlex on Σ∗ by

u1 . . . unRlexv1 . . . vm :⇔∃i ∈ {1, . . . , n}. (uiRΣvi ∧ ∀j < i. uj = vj)

∨ (n > m ∧ u1 . . . um = v1 . . . vm).
(5)

If RΣ has any of the properties in definition 2, then so does Rlex. If RΣ is a
total, irreflexive, transitive relation, we call Rlex lexicographical order. We call
an RTS (Σ, T ) lexicographically ordered if there exists a lexicographical order
Rlex such that RT ⊆ Rlex.

Let ∆ := {( xx ) | x ∈ Σ}. We define the interpretation automaton that
captures the essential steps to recognize lexicographical orders as the automaton
Vlex depicted in Figure 3 over the alphabet (Σ × Σ) × 2Σ×Σ . In particular
I ∪∆, I \∆ ∈ 2Σ×Σ . The automaton Vlex demands for some i ∈ N the first i− 1
letters to be equal and then make a transition according to our input statement
on the i-th position in order to reach the accepting state.

For a fixed statement I ∈ (2Σ×Σ)
∗, we consider the induced relation RI from

(4). By Lemma 1 and Theorem 2 it suffices to find for all n ∈ N an irreflexive,
transitive relation that over-approximates the transition relation on Σn, i.e.,

(i) Irreflexive: RI ⊆ {(x, y) | x ̸= y} ∩ (Σ ×Σ)n.
(ii) Transitive: {(x, z) | ∃y.{(x, y), (y, z)} ⊆ RI} ⊆ RI .
(iii) over-approximates transition relation RT ∩ (Σ ×Σ)n ⊆ RI



8 Roland Herrmann and Philipp Rümmer

q0start q1

sink

w ∈ ∆

w ∈ I \∆

w /∈ I ∪∆

true

true

(a) Vlex

q0start

sink

w ∈ I

w /∈ I

true

(b) VAll

Fig. 3: Interpretation automata for lexicographical, respectively letterwise order

Example 3. The token passing protocol is lexicographically ordered. We simply
define RΣ = {(T, 0)}. The corresponding statement that recognises this lexico-
graphical order is then In = {( T0 )}n for all n ∈ N and we have

RIn = L
(
(( 00 ) + ( TT ))

∗
( T0 ) (Σ ×Σ)

∗) ∩ (Σ ×Σ)n. (6)

We now construct for a given RTS (Σ, T ) an automaton Alex that searches
within the set of relations RI for one that satisfies the conditions (i)-(iii). Alex

should have 2Σ×Σ as alphabet and accept a statement I ∈ (2Σ×Σ)
∗ if and only

if RI satisfies (i)-(iii). However, the conditions (i)-(iii) are universally quantified.
In order to eliminate the universal quantifier on our three conditions, we first
construct the complement of the desired automaton, that is, an automaton that
accepts I if and only if there exist x, y, z ∈ Σ∗ such that one of (i)-(iii) does not
hold, i.e.

(xRIy ∧ x = y) ∨ (xRIy ∧ yRIz ∧ ¬xRIz) ∨ (xT y ∧ ¬xRIy). (7)

Any of the occurring predicates can be expressed by an automaton, e.g., xRIy
evaluates to true if and only if ((x ⊗ y) ⊗ I) ∈ L(Vlex), Vlex just ignores the z
argument. Hence, we need three copies of Vlex for the predicates xRIy, yRIz,
xRIz, each one ignoring the argument that does not occur in it. For the equality
check, x = y, we take a two state automaton that accepts a pair (x, y) if and
only if x = y. Lastly xRT y is expressed by ignoring the z input and have a run
in the transducer T . We can check which of these predicates hold simultaneously
by going through the product of all these automata states in parallel, that is, we
have

QAC
lex

= QT︸︷︷︸
xRT y

× Q=︸︷︷︸
x=y

×QVlex︸ ︷︷ ︸
xRIy

×QVlex︸ ︷︷ ︸
yRIz

×QVlex︸ ︷︷ ︸
xRIz

. (8)

The transition relation is then given according to the transition relations of the
respective factors, i.e.,

((pT , p=, p1, p2, p3), (xi, yi, zi, Ii), (qT , q=, q1, q2, q3)) ∈ δ (9)
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if and only if all of the following conditions hold:

(pT , (xi, yi), qT ) ∈ δT (xT y)

(p=, (xi, yi), q=) ∈ δ= (x = y)

(p1, (xi, yi, Ii), q1) ∈ δVlex
(xRIy)

(p2, (yi, zi, Ii), q2) ∈ δVlex
(yRIz)

(p3, (xi, zi, Ii), q3) ∈ δVlex
(xRIz)

We can now translate our formula one to one to the accepting states of AC
lex,

where we use that the formula 7 is already in disjunctive normal form (each
clause stands for the negation of one of the conditions (i)-(iii)):

FAC
lex

=QT × F= × FVlex
×QVlex

×QVlex
¬(i)

∪QT ×Q= × FVlex
× FVlex

× (QVlex
\ FVlex

) ¬(ii)
∪ FT ×Q= × (QVlex

\ FVlex
)×QVlex

×QVlex
¬(iii)

That way, our automaton accepts a tuple (x, y, z, I) if and only if at least one of
the conditions (i)-(iii) fails. In order to get rid of the first three input tapes, we
project onto the statement input tape, ignoring xi, yi, zi in the transition relation
δ. We can do this because x, y, z are existentially quantified in the negated
statements of (i)-(iii). Let δVC

lex
be the transition relation that we obtain from δ

by projecting onto the statement tape. Finally, we can define

AC
lex = (QAC

lex
, Γ, (sT , s=, sVlex

, sVlex
, sVlex

), δAC
lex

, FAC
lex

). (10)

AC
lex accepts a statement I ∈ Γ ∗ if and only if there exist x, y, z ∈ Σ∗ such that

one of (i)-(iii) does not hold. We obtain the following theorem:

Theorem 3. Let (Σ, T ) be a RTS, AC
lex the corresponding automaton according

to our construction above. If (AC
lex)

C = Alex accepts a word of every length, i.e.
L(Alex) ∩ Γn ̸= ∅ for all n ∈ N, then (Σ, T ) terminates.

Proof. Suppose Alex accepts a word of every length. Let w0 ∈ Σ∗, I ∈ L(Alex)
with |w0| = |I|. Assume for a contradiction that there exists (wi)i∈N with wi ⊗
wi+1 ∈ L(T ). By construction RI over-approximates the transition relation,
hence, (wi, wi+1) ∈ RI . Furthermore, RI is irreflexive and transitive since Alex

accepts only statement with these properties. In particular, RI is well-founded
which is a contradiction to (wi, wi+1) ∈ RI for all i ∈ N.

Remark 3. Let A be an NFA. In order to show that A accepts a word of every
length we can apply the following construction. Construct the automaton A∗
which is the same as A except that we replace the alphabet by the singleton
ΣA∗ = {∗} and accordingly (p, ∗, q) ∈ δA∗ if and only if there exists an s ∈ ΣA
such that (p, s, q) ∈ δA. Then A accepts a word of every length if and only if A∗
is universal which is easy to check.
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Corollary 1. Let (Σ, T ) be a lexicographically ordered RTS. Then L(Alex) ∩
Γn ̸= ∅ for all n ∈ N.

Proof. Let >Σ be the irreflexive, transitive relation on Σ that induces the lexi-
cographical order on Σ∗. Then (>Σ)

n ∈ L(Alex) for all n ∈ N.

Remark 4 (positionwise different orders). The interpretation automaton does
even recognise more than only lexicographically ordered systems. We are allowed
to consider different orders on every position. For example, we can take the
system where even agents count down from some fixed n ∈ N, and odd agents
count up from zero to n, i.e. the transition relation is given by

((( 01 ) + · · ·+ ( n−1
n )) (( n

n−1 ) + · · ·+ ( 10 )))
∗
. (11)

Then Alex would recognise all words with the following letters on odd, respec-
tively even positions

Iodd = {( x−1
x ) | x ∈ {1, . . . , n}} Ieven = {( x

x−1 ) | x ∈ {1, . . . , n}} (12)

In particular, the system is proved terminating by our automaton Alex.

4.2 Letterwise ordered systems

In lexicographically ordered systems, one only needs to wait for the next letter
to strictly progress towards some terminating configuration. In this section we
will add letterwise loops, i.e., the i-th agent of the system may execute a loop
but the RTS still terminates, since the loop can only be executed finitely often.
The following example explains the class of systems we want to tackle.

Example 4 (polite Mexican standoff). Let n agents be alive (state A) as an initial
configuration of our RTS. Every agent is armed and wants to kill all remaining
agents, such that the agent is the last one alive (such situations are called Mex-
ican standoff). In order to bring the whole thing to a neat and tidy end, they
decide to randomly pick two agents to have a transition into a shooting state (S)
and have a duel, while the others are waiting until the duel has finished. In the
duel, randomly one of the two duelists dies (changes state to D) and the other
stays alive (changes state back to A). Formally, let Σ = {A,S,D} be the alpha-
bet. The transition relation T is described in Figure 4, where Xi ∈ (A+D)∗ for
i ∈ {1, . . . , 3}. We labelled the transitions for later reference. It is now possible
for the first agent who transitions into S to go back to A afterwards, as long
as a later agent changes his state to D, contributing towards the terminating
configuration D∗AD∗.

The polite Mexican standoff is not lexicographically ordered, since we do not
know whether the first or the second agent of the duel dies. Formally, both choices
A > S and S > A contradict either second or init in the induced lexicographical
order. However, we can say that at some point we may progress from A to D and
can never go back. Hence, to model just first, second, skipF irst and skipSecond
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X1AX2DX3

X1AX2AX3 X1SX2SX3

X1DX2AX3

init

skipFirst

skipSecond

second

first

.

Fig. 4: transition graph of the polite Mexican standoff

of Figure 4 we may set A =1 S >1 D for a relation R1 and observe that all agents
of our configuration follow this order. This relation can be modelled by the set

{(AA ) , ( SS ) , (
D
D ) , (AS ) , ( S

A ) , ( A
D ) , ( S

D )} (13)

In order to verify that every agent follows this relation we define the inter-
pretation VAll, depicted in Figure 3. A configuration w1 · · ·wn ∈ Σn satisfies
I1 · · · In ∈ (2Σ)

n in VAll if and only if wi ∈ Ii for all i ∈ {1, . . . , n}. Conse-
quently, the statements that describe the desired order relation on configuration
is given by applying the Kleene-star to (13).

Remark 5. VAll does not subsume lexicographical orders. Consider counting
down in binary. Then the statement {( 00 ) , ( 11 ) , ( 10 )}n does not contain all tran-
sitions of counting down in binary in the interpretation VAll, since it would
demand the agents after the first change to follow this order, too.

In order to include the transition init from the polite Mexican standoff, we refine
our relation by introducing another relation R2 that specifies what happens if
we are stuck in the case x =1 y. Here, it suffices to demand A >2 S. Since R2

should only be asked if =1 occurred, it is irrelevant how D is related (it could
also be unrelated to A and S). Formally, the overall relation R3 is defined by

xR3y :⇔ x >1 y ∨ (x =1 y ∧ x >2 y). (14)

Lemma 3. Let R1, R2 ⊂ Σ ×Σ be two preorders on a set Σ. Then R3 defined
by (14) is irreflexive and transitive.

Theorem 2 and Lemma 3 result in the following Theorem.

Theorem 4. Let (Σ, T ) be an RTS, n ∈ N. Let R1, R2 be two preorders on Σn

and let R3 be defined as in (14), such that R3 over-approximates the transition
relation on Σn, i.e., we have (Σ × Σ)n ∩ RT ⊆ R3. Then the RTS terminates
on any input w ∈ Σn.
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As in the case of lexicographical orders, we can construct an automaton AAll

that searches for a relation that proves our system terminating. The construction
works completely analogue to the previous section. The only difference is that
now we need eight copies of VAll to model the predicates Ri(x, y), Ri(y, z),
Ri(x, z), Ri(y, x) for each i ∈ {1, 2}. Formally we have

AC
All = (QT ×Q= × (QVAll

)8, 2Σ×Σ , (sT , s=, (sVAll
)8), δAC

All
, F ). (15)

δAC
All

is constructed analogously as for AC
lex, following the transition relations of

each factor if there exists a triple (x, y, z) ∈ Σ3 that permits a transition in each
factor uniformly. The accepting states F correspond to the negated properties of
being reflexive, respectively transitive for R1 and R2, and R3 over-approximating
the transition relation. For the sake of presentation, we give the accepting states
for the negation of R3 over-approximating the transition relation. The negation
of being an over-approximation of R3 looks as follows.

xRT y ∧ (¬xR1y ∨ yR1x) ∧ (¬xR1y ∨ ¬yR1x ∨ ¬xR2y ∨ yR2x). (16)

Let W1 be the set of literals in the second conjunct, W2 the set of literals in the
third conjunct of (16). Then the conjunctive normal form of (16) is given by∨

w1∈W1,w2∈W2

xRT y ∧ w1 ∧ w2. (17)

The corresponding accepting states for AC
All are then given by the union of the

accepting states corresponding to each disjunct of (17).
We may carry on this construction inductively. Let in the following Ri always

be a preorder. Let F1 :⇔ xR1y ∧ ¬yR1x. We define

Si ⇔

(
i∧

k=1

x =k y

)
∧ x >i+1 y. (18)

Then we can replace the relation from (14) in Theorem 4 by Fi+1 :⇔ Fi ∨ Si.

Lemma 4. Let n ∈ N. Let Ri be preorders on a set Σ for all i ∈ N with i ≤ n.
Let Rn+1 be the relation defined by Fn. Then Rn+1 is irreflexive and transitive.

Theorem 5. Let (Σ, T ) be an RTS. Let AAll,i = (AC
All,i)

C be the complement
of the automaton constructed above with the modifications according to Fi. If
there exists an i ∈ N such that AAll,i accepts a word of every length, then (Σ, T )
terminates.

Proof. Let i ∈ N. The automaton AAll,i accepts exactly those words whose
induced relation is given by Fi and over-approximates the transition relation by
construction. Since Fi is well-founded by Lemma 4, (Σ, T ) terminates if AAll,i

accepts a word of every length.
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5 Conclusion and Future Work

We provided the constructions of automata that can prove termination of lexico-
graphically, respectively letterwise ordered systems, carrying over the approach
of [17] from safety to liveness properties. The implementation of the construction
is ongoing work. A natural continuation would be to tackle other fragments of
regular transition systems that can not be proved terminating with the methods
from section 4, e.g. a “waving” token passing

T000 → 0TTT → 0T00 → T0TT → 00T0 → TT0T → 000T. (19)

On the other hand, one can loosen restrictions on the alphabet, allowing infi-
nite alphabets. This can be done by using parameterized automata [4] to model
the transition relation. An instance of such a transition system is Dijkstra’s
self-stabilizing protocol. However, these systems have two difficulties to over-
come: (1) they are no longer weakly-finite and therefore need more preparation
to formulate terminating conditions to search for and (2) complements of pa-
rameterized automata do not exist in general and even if they exist, it is hard
to complement them but complementing is a crucial step to eliminate universal
quantifiers involved in the conditions that are needed to prove termination.

Furthermore, the flexibility of the approach from [17] may allow to tackle
completely different verification problems apart from safety and termination.
To this end, the interpretation automaton and the corresponding alphabet for
statements have to be varied. This seems to be the challenging part. Many choices
may result in constructing empty or universal automata in the end.
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