
Available

CAV
Evaluation

Artifact

Reusable

CAV
Evaluation

Artifact

HornStr: Invariant Synthesis for Regular Model
Checking as Constrained Horn Clauses

Hongjian Jiang1 , Anthony W. Lin1,2 , Oliver Markgraf1 , Philipp
Rümmer3,4 , and Daniel Stan5,6

1 University of Kaiserslautern-Landau, Kaiserslautern Germany,
2 Max Planck Institute for Software Systems, Kaiserslautern, Germany

3 University of Regensburg, Regensburg, Germany
4 Uppsala University, Uppsala, Sweden

5 EPITA, Laboratoire de Recherche de l’EPITA (LRE), 14-16 Rue Voltaire, 94270 Le
Kremlin Bicêtre, France

6 Université de Strasbourg, CNRS, ICube UMR7357, F-67000 Strasbourg, France

Abstract. We present HornStr, the first solver for invariant synthesis for
Regular Model Checking (RMC) with the specification provided in the
SMT-LIB 2.6 theory of strings. It is well-known that invariant synthesis
for RMC subsumes various important verification problems, including
safety verification for parameterized systems. To achieve a simple and
standardized file format, we treat the invariant synthesis problem as a
problem of solving Constrained Horn Clauses (CHCs) over strings. Two
strategies for synthesizing invariants in terms of regular constraints are
supported: (1) L* automata learning, and (2) SAT-based automata learn-
ing. HornStr implements these strategies with the help of existing SMT
solvers for strings, which are interfaced through SMT-LIB. HornStr pro-
vides an easy-to-use interface for string solver developers to apply their
techniques to verification. At the same time, it allows verification re-
searchers to painlessly tap into the wealth of modern string solving tech-
niques. To assess the effectiveness of HornStr, we conducted a compre-
hensive evaluation using benchmarks derived from applications including
parameterized verification and string rewriting tasks. Our experiments
highlight HornStr’s capacity to effectively handle these benchmarks, e.g.,
as the first solver to verify the challenging MU puzzle automatically.
Finally, HornStr can be used to automatically generate a new class of
interesting SMT-LIB 2.6 string constraint benchmarks, which might in
the future be used in the SMT-COMP strings track. In particular, our
experiments on the above invariant synthesis benchmarks produce more
than 30000 new QF_S constraints. We also detail the performance of var-
ious integrated string solvers, providing insights into their effectiveness
on our new benchmarks.

1 Introduction

Regular Model Checking (RMC) [1,53,32,10,39] is a prominent framework for
modeling an infinite-state transition system as a string rewrite system. Classi-
cally, the transition relation is specified as a length-preserving transducer. It is

https://doi.org/10.5281/zenodo.15195124
https://orcid.org/0009-0006-4082-2633
https://orcid.org/0000-0003-4715-5096
https://orcid.org/0000-0003-4817-4563
https://orcid.org/0000-0002-2733-7098
https://orcid.org/0000-0002-4723-5742

2 H. Jiang et al.

well-known that RMC can be used to model a variety of systems, most notably
parameterized systems, i.e., distributed protocols with an arbitrary number of
processes. Many RMC tools have been developed, focusing on safety verifica-
tion, e.g., [52,4,3,10,53,9,45,1,35,15,43], to name a few.

Despite the amount of work on RMC in the past decades and the potential
of RMC in addressing highly impactful verification problems, RMC tools are
typically cumbersome to use. The first problem is the need for the user to specify
the model in a low-level language, usually in terms of transducers. The second
problem is the absence of a standard file format agreed upon by RMC tool
developers. Perhaps this is one main reason that most RMC tools attracted very
few users and are mostly no longer maintained today.

SMT-LIB 2.6 Theory of Strings. String constraints have been standardized
as part of SMT-LIB 2.6 since 2020, enabling the organization of a track for string
solvers at the annual SMT-COMP. The theory over strings has since attracted
significant interest in academia [12,22,29] and industry [47,40,6]. The theory
provides rich support for string operators (concatenation, replace-all, regular
constraints, length constraints, etc.), allowing one to conveniently express oper-
ations performed in string-manipulating programs in a high-level language like
JavaScript. Out of the many existing string solvers [2,44,33,48,50,54,51,31], at
least five solvers (Z3 [16], Z3-alpha [41], Z3-noodler [14], cvc5 [7], and OSTRICH
[13]) now support the SMT-LIB 2.6 format.

RMC meets String Solvers. In this paper, we propose to connect RMC with
string solvers. Our goal is to provide an easy-to-use and unified interface: (i) for
string solver developers to apply their techniques to verification, and (ii) for
verification researchers/users who could benefit from RMC and parameterized
verification to easily tap into the wealth of modern string-solving techniques.
To this end, we propose to treat invariant synthesis for RMC as a sub-problem
of Constrained Horn Clauses (CHCs) over the theory of strings. CHCs [8,20]
form a fragment of first-order logic over background theories that serves as an
intermediate language for expressing safety verification problems. A CHC formu-
lation of RMC benefits from the standard and familiar SMT-LIB specification
language. Before our work, no existing CHC solvers directly supported the theory
of strings.

Our first contribution is, therefore, to develop the first solver HornStr for
invariant synthesis for RMC expressed as a CHC problem over strings. Our
solver HornStr supports two strategies for synthesizing invariants in terms of
regular constraints: (1) L* automata learning [5], and (2) SAT-based automata
learning [23]. Both solvers interact with a string solver via equivalence queries,
which ask the string solver to verify whether an invariant candidate is correct.
The first strategy also interacts with the string solver via membership queries,
which check whether a guessed string is contained in all invariants. To handle
both kinds of queries, HornStr uses other string solvers as backends through the
SMT-LIB 2.6 interface. Note that similar strategies were already used in other
RMC tools [15,45], where these queries were answered by interacting with an
ad-hoc automata implementation, in contrast to string solvers, which are con-

HornStr: A string Theory Solver for Constrained Horn Clauses 3

tinuously being improved. To assess the effectiveness of HornStr, we conducted a
comprehensive evaluation using benchmarks derived from applications, includ-
ing parameterized verification and string rewriting tasks, integrating the avail-
able string solvers individually and in combination. Our experiments highlight
HornStr’s ability to effectively handle these benchmarks, e.g., as the first solver
to verify the challenging MU puzzle automatically.

As a by-product of our tool development, our second contribution is the
generation of a new class of QF_S constraints, which could be used in future
SMT-COMP competitions for string solvers. These constraints differ from most
benchmarks currently available in SMT-LIB, as they are derived from an invari-
ant synthesis problem. In contrast, the majority of existing benchmarks stem
from symbolic execution (like, e.g., the PyEx family). We have evaluated avail-
able string solvers on these benchmarks and report the results in this paper.

2 Constraint Horn Clauses

We describe in this section the CHC formalism used as input format by HornStr,
as well as examples of applications, illustrating the relationship with RMC and
string-rewrite systems.

Definition 1. A Constrained Horn Clause (CHC) is a first-order logic formula
of the form

∀X .φ ∧ p1(T1) ∧ · · · ∧ pk(Tk) → ψ, (k ≥ 0),

in which the term ψ is either an uninterpreted predicate h(T) or ⊥, and p1, . . . , pk
are uninterpreted predicates. The set of variables X contains all variables from
T ∪

⋃k
i=1 Ti. The formula φ represents a constraint in the background theory,

such as linear arithmetic or strings.

A CHC system is a conjunction of constrained Horn clauses. To solve a CHC
system, it is necessary to find interpretations of the uninterpreted predicates that
satisfy all clauses. We focus in the following on CHC systems over the theory
of strings, with one unary uninterpreted predicate. Finding a valuation for this
predicate p amounts to finding a set of words w for which p(w) holds, so that
all clauses are satisfied. As a finite representation is needed, HornStr will focus
on regular language solutions.

2.1 Regular Model Checking

Example 1. Consider the token passing protocol on a ring topology, with two
initial tokens, red and blue, at first and last position respectively, moving syn-
chronously in opposite directions, without possibly colliding. A configuration can
be seen as a word over Σ = {r, b, n} where n denotes the absence of a token.
Assume we are interested in the safety property “the two tokens never reach the
other end”, invalidated by a word in the language L(b · n∗ · r). One can observe
that an initial odd distance between the two tokens is a necessary and sufficient
condition for avoiding these configurations.

4 H. Jiang et al.

Checking the safety of this protocol can therefore be specified with the fol-
lowing CHC System:

Vi ∈ L(rn(nn)∗b) → p(Vi) (1)
p(Vi) ∧ Vi ∈ L(bn∗r) → ⊥ (2)

p(Vi) ∧ Vi = A · (rn) ·B · (nb) · C ∧ Vo = A · (nr) ·B · (bn) · C → p(Vo) (3)
p(Vi) ∧ Vi = A · (nb) ·B · (rn) · C ∧ Vo = A · (bn) ·B · (nr) · C → p(Vo) (4)

p(Vi) ∧ Vi = A · (rb) ·B ∧ Vo = A · (br) ·B → p(Vo) (5)

The variables Vi, Vo, A,B,C in the clauses are implicitly universally quantified.
The clauses can be partitioned into three categories: Init = {(1)} expresses
membership of an initial configuration, while Bad = {(2)} expresses undesired
configurations. The rest of the clauses, Tr = {(3), (4), (5)}, model the different
transitions where tokens move synchronously, possibly changing their order in
(5). Note that arbitrarily many extra string variables may be used as long as they
are universally quantified. The different constraints involve string constraints
either in the form of regular expression constraints ((1) and (2)) or in terms of
string equality with concatenation operations ((3)− (5)).

Example 1 is a rather usual instance of RMC problem, where one asks
whether a system is safe by finding an inductive invariant, that is, a set of
states or words containing all initial states (1), no bad state (2), and that is
closed under the transitions (3)− (5).

Several candidate sets can be considered, such as the set of all reachable words
from an initial clause (the strongest possible invariant), or the set of words from
which no bad state can be reached (the weakest possible invariant). Recall, how-
ever, that we need to compute finite representations of the considered invariants;
in our case, as regular languages. The previously mentioned sets are therefore
less useful: any reachable and any unsafe configuration must have tokens at equal
distance for the word borders, making the language irregular. However, a suit-
able regular inductive invariant does exist, for example L(n∗Σ(n(nn)∗)Σn∗),
which translates to “an odd distance between two tokens”.

2.2 String-rewrite system: The MU puzzle

The previous CHC system provided an example of a Regular Model Checking
problem for a system with an initial state of arbitrary length, but where tran-
sitions preserve the length of the word. Such transitions can usually be repre-
sented by length-preserving transducers. HornStr’s input formalism is, however,
not restricted to this setting, and can, for example, be applied to string-rewrite
systems:

Example 2. The MU puzzle [25] is a string-rewrite system over the alphabet
Σ = {M, I, U}: Its objective is to determine whether the string MU can be
derived from the Initial string MI by applying the given rewriting rules: R =
{(xI → xIU), (Mx → Mxx), (xIIIy → xUy), (xUUy → xy) | x, y ∈ Σ∗}. For
example, using the first rule, the string MI is transformed to MIU in one step.

HornStr: A string Theory Solver for Constrained Horn Clauses 5

We can model the puzzle using the following CHCs, where all variables
Vi, Vo, x, y ∈ Σ∗ are universally quantified:

Vi =MI → p(Vi) (1)
p(Vi) ∧ Vi = xI ∧ Vo = xIU → p(Vo) (2)

p(Vi) ∧ Vi =Mx ∧ Vo =Mxx→ p(Vo) (3)
p(Vi) ∧ Vi = xIIIy ∧ Vo = xUy → p(Vo) (4)
p(Vi) ∧ Vi = xUUy ∧ Vo = xy → p(Vo) (5)

p(Vi) ∧ Vi =MU → ⊥ (6)

This CHC system is satisfiable, proving that the MU puzzle cannot be solved.

3 Architecture of HornStr

The HornStr framework integrates CHC and string constraints, leveraging au-
tomata learning techniques in combination with string solvers. This integration
addresses complex problems expressed in SMT-LIB files, and modeling, e.g., pa-
rameterized systems or string-rewrite systems. Figure 1 illustrates the overall
architecture of HornStr.

The framework commences with an SMT-LIB formatted file as its input, a
format prevalent in the SMT community for describing problems that require
solutions to satisfy constraints involving complex data types and operations.
The Learners play a crucial role in synthesizing predicates based on regular
constraints. They employ two different strategies:

1. SAT-based Enumeration utilizes SAT solvers to generate potential solutions,
as well as string solvers to assess whether the solution satisfies given CHCs.
In case of violated CHCs, the string solvers can provide a counterexam-
ple. Initially, the set of counterexamples is empty. The learner constructs a
Deterministic Finite-state Automaton (DFA) as a hypothesis solution that
accepts every word. This DFA is transformed into a regular expression via an
intermediate translator, implemented by Brzozowski and McCluskey’s state
elimination method [11]. The translator then sends an SMT-LIB query to
the String Solvers to check for consistency with the CHCs. Upon receiving
the query, the string solvers check the solution behind the scenes, returning
either unsat or a counterexample to the learner.

2. Active Learner directly interacts with the learning model through queries.
This learner constructs both equivalence queries and membership queries to
verify if a string or sequence belongs to the model’s language or reachability
queries to determine if a certain state or condition is achievable. It main-
tains an observation table [5] in its cache, from which it constructs a DFA.
The Reachability module is responsible for communicating with the string
solvers to ascertain whether the queried word is within the language: this
involves several string queries, enumerating initial words (Init), then using
all applicable transitions (Tr) to find all reachable words iteratively. The

6 H. Jiang et al.

SMT-LIB Query UNSAT/Counterex. SMT-LIB Query SAT/Transition

SMT2 File InterpretationHornStr

Learners

SAT-based Enumeration Active Learner

DFA to Regex

Equivalence?

Reachability

Membership?

String Solvers

Z3, Z3-alpha, Z3-noodler, cvc5, OSTRICH

Fig. 1. The overall framework of HornStr.

membership query is answered positively when the desired word is found in
the reachable fragment, or negatively if all the words of the same length,
or up to a fixed constant, have been explored. The latter rule constitutes a
heuristic inspired by the length-preserving transition models.

Furthermore, String Solvers respond to queries from the Learners by resolv-
ing a series of string constraints. To enhance the efficiency of answering equiv-
alence and membership queries, the framework has integrated an incremental
solving technique. Each CHC is assigned to a dedicated solver thread, for pre-
computation purposes. For each word or automata query, the system saves the
current constraints (push), inserts the new query constraint, computes the re-
sult, and upon obtaining the result, it restores the saved constraints (pop), pro-
vides the response, and prepares for the next query. Through a command line
argument, the user can also instruct HornStr to handle all CHCs using a sin-
gle solver, as this may save processing time for larger equivalence queries. On
the contrary, word queries involve small input values, so they usually beneficit
from specific String Solver optimizations, one for each clause. HornStr employs
a variety of state-of-the-art solvers, such as Z3, Z3-alpha, Z3-noodler, cvc5, and
OSTRICH. Each of these solvers brings unique capabilities that range from basic
string manipulations to more complex pattern matching and replacement oper-
ations. These specialized tools are adept at managing string operations within
the constraints specified in SMT-LIB queries. Additionally, the framework offers
a configuration file for users to specify their own string solver, as an external
implementation of the interactive mode of the SMT-LIB 2.6 standard.

The execution of HornStr progresses through the following phases:

1. Initialization: The procedure begins with the selection of a suitable learning
strategy and a string solver. Subsequently, an SMT-LIB file containing the
uninterpreted predicate declaration, followed by constraint Horn clauses, is
loaded, and the designated solver is instantiated together with the necessary
oracles.

HornStr: A string Theory Solver for Constrained Horn Clauses 7

2. Query Processing and Model Refinement: When employing the SAT-
based enumeration approach [45], the learner initially constructs a DFA with
a single state and an empty counterexample set using a SAT solver. Once
an appropriate DFA is generated that integrates the counterexample set, an
equivalence check is conducted against the hypothesis using the string solver.
If a new counterexample is detected, the hypothesis undergoes refinement
and reconstruction. If the SAT solver returns an unsatisfiable outcome, the
automaton’s state space is incrementally expanded, and the process iterates
until the string solver fails to find further counterexamples and accepts the
hypothesis.
Alternatively, if the active learner is selected [15], membership queries are
issued to verify whether a given word w belongs to the target language
L, leveraging the reachability module. This initiates an iterative process in
which membership queries facilitate hypothesis generation, which is subse-
quently validated via equivalence queries.

3. Solution Generation: Based on the preliminary results and constructed
queries, the string solver is employed to analyze and resolve regular con-
straints. Within this framework, the solver integrates the Init and Tr com-
ponents to determine whether a word w is accepted. Conversely, if the word
is rejected, the decision is justified through the Bad and Tr components.
For equivalence queries, all Horn clauses are evaluated by testing them with
two free variables, varin and varout. For example, if varout appears as part
of a word in the hypothesis and satisfies the Bad clause, it is classified as a
negative counterexample. Similarly, positive and inductive counterexamples
can be identified using the Init and Tr components, respectively. If unsup-
ported by the learner, inductive counterexamples are converted into positive
and negative counterexamples thanks to reachability analysis, following the
strict but generous teacher [15] concept.

4 Evaluation

In this section, we evaluate the performance and capabilities of HornStr7 [30]
on a set of benchmarks derived from the verification of distributed systems and
string rewriting systems. HornStr uses string solvers as oracles for membership
and equivalence queries, the choice of the solvers in use is an important aspect
of its performance.

Our evaluation is divided into two parts. First, we examine how the differ-
ent string solvers can handle the string formulas generated as queries during
the CHC-solving process. As described in Section 3, HornStr supports incremen-
tal solving, which can improve efficiency by reusing information across related
queries. We compare the performance of string solvers on both incremental and
non-incremental queries.

Second, we evaluate HornStr’s overall performance using the string solvers
that performed best in the first part of the evaluation. Experiments were con-
7 https://arg-git.informatik.uni-kl.de/pub/string-chc-lib

https://arg-git.informatik.uni-kl.de/pub/string-chc-lib

8 H. Jiang et al.

ducted on an Intel Core i7-10510U CPU at 1.8GHz with 16 GB of RAM running
on Windows 11.

Our benchmarks are derived from two distinct domains:

– Verification of Distributed Systems: We transform Regular Model Check-
ing protocols [15,18] into Constrained Horn Clause (CHC) programs using
automatic translations: Bakery[34], Szymanski[49,21], Dijkstra[42], Burns[42],
Dining Philosopher Protocol[24], Israeli-Jalfon’s self-stabilising protocol[28],
Resource-allocator protocol[17], David Gries’s coffee can problem[37], ger-
man protocol[3] and Kanban production system[19].

– String Rewriting Systems: We also manually model the MU puzzle and
EqDist protocols as CHC programs, demonstrating the versatility of the
approach.

4.1 Results of the String Solver Experiments

Table 1 provides a comparison of the string solvers Z3, cvc5, Z3-noodler, Z3-
alpha, and OSTRICH. The benchmarks are categorized into incremental and
non-incremental queries, further divided by the query type: membership or
equivalence. Our primary metric of interest is the number of benchmarks solved,
as failing to resolve even a single query can prevent the CHC solver from termi-
nating. The timeout for each benchmark is set to 30s.

Equivalence queries predominantly involve reasoning over regular expressions
but may also include word equations when these are part of the Horn clause.
Membership queries, while also involving regular expressions, tend to emphasize
disequalities (x ̸= c, where x is a string variable and c is a string constant).

In the incremental setting, the membership results are relatively similar, with
all solvers processing over 514 benchmarks. Notably, Z3-Noodler leads by solving
all 523 benchmarks in an average of 109.7 seconds, whereas OSTRICH, cvc5, Z3,
and Z3-alpha solve between 514 and 518 benchmarks in slightly higher runtimes.

For the incremental equivalence queries, we see different behaviors among the
solvers. Z3-noodler solves all 396 queries in just 15.5 seconds, while OSTRICH
manages 378. On the other hand, cvc5, Z3, and Z3-alpha only solve between 109
and 126 queries. A similar pattern shows up in the non-incremental equivalence
queries: Z3-noodler handles all 848 queries, with OSTRICH coming in close
with 784, whereas cvc5, Z3, and Z3-alpha solve between 403 and 457 queries.
In the case of membership queries, every solver covers nearly all of the 30,902
benchmarks, with only cvc5 and OSTRICH missing about 1%, while Z3-noodler
and Z3 turn out to be the fastest to solve them all.

Across both incremental and non-incremental benchmarks, the results demon-
strate a consistent pattern: membership queries are generally handled well by
most solvers, while equivalence queries involving regular expressions remain a
challenge for many. Notably, automata-based solvers such as Z3-noodler and
OSTRICH consistently show superior performance on equivalence queries, likely
due to their design being well-suited for reasoning over regular expressions. These

HornStr: A string Theory Solver for Constrained Horn Clauses 9

results also highlight the high incrementality of our approach, as seen when com-
paring the total time spent on all incremental vs. non-incremental queries. Note
that OSTRICH’s overall runtime is a bit higher partly due to the JVM startup
time incurred for each benchmark.

To address the challenges faced by solvers struggling with equivalence queries,
we experimented with different settings and flags for those solvers and imple-
mented a regular expression simplifier on our end before sending the queries.
The simplifier aimed to reduce the nesting of Kleene stars using algebraic trans-
formations on regular expressions. While this led to marginal improvements for
some poorly performing solvers, it had little impact overall and even worsened
performance for solvers already handling regular expressions effectively.

Table 1. Comparison of state-of-the-art string solvers. Benchmarks are divided into
incremental and non-incremental membership and equivalence queries. The timeout is
30s. Timeouts are excluded from solved time.

Incremental Non-Incremental

Solver Mem Time (s) Equiv Time (s) Mem Time (s) Equiv Time (s)

OSTRICH 514 453.2 378 410.8 30 773 16 504.9 784 980.8
cvc5 517 97.8 126 7948.4 30 652 610.5 457 270.7
Z3 517 33.7 109 506.7 30 902 1511.7 403 102.1
Z3-noodler 523 109.7 396 15.5 30 902 806.3 848 17.9
Z3-alpha 518 86.4 109 516.6 30 902 3839.1 404 162.7

4.2 Results of the HornStr Experiments

After evaluating the performance of various string solvers as membership and
equivalence oracles in our preliminary experiments, we now assess HornStr for
CHC solving. Based on the incremental benchmark results (Table 1), we chose
Z3 for membership queries and Z3-noodler for equivalence queries.

We developed an automatic parser that transforms length-preserving RMC
protocols into CHC SMT2 format, incorporating word equations and regular
membership constraints. Next, we evaluate the efficiency of HornStr using both
SAT-based Enumeration and the Active Learner, as described in Section 3. In our
evaluation, we record whether HornStr produces a deterministic finite automaton
for the uninterpreted invariant within a predefined time limit or identifies an
unsafe trace during the benchmark evaluation.

Our evaluation demonstrates that our tool solved most benchmarks in under
a second using either SAT-based enumeration or the active learner. Notably,
SAT-based enumeration solved every protocol listed in Table 2, whereas the ac-
tive learner failed to find solutions for some benchmarks. However, certain pro-
tocols—such as Kanban and German—exceeded the 60-second timeout due to

10 H. Jiang et al.

the complexity of transitions in their CHC representations. Detailed evaluation
results are presented in Table 2.

Table 2. Comparison of protocols: automaton size and learning time across SAT-Based
and active Learner

SAT-based Enumeration Active Learner
Protocol Size Time(s) Size Time(s)

Token Pass 3 0.41 3 0.10
2 Tokens Pass 3 0.78 6 0.57
3 Tokens Pass 2 0.30 2 0.17
Power-Binary 1 0.2 1 0.01

Bakery 2 0.15 3 0.37
Burns 2 2.09 ✘ TO

Coffee-Can 2 0.52 5 9.66
Coffee-Can-v2 3 0.31 4 23.45
Herman-Linear 2 0.11 2 0.08
Herman-Ring 2 0.51 2 0.33
Israeli-Jalfon 3 0.35 4 0.46

LR-Philo 2 0.80 3 2.84
Mux-Array 2 0.49 ✘ TO

Resource-Allocator 2 0.14 4 25.19
Eqdist 3 1.45 ✘ TO

MU Puzzle 3 11.01 ✘ TO
Water-Jug 2 2.05 ✘ TO

Dining-Crypt 2 10.02 ✘ TO

5 Conclusions

We introduced HornStr, the first solver for invariant synthesis in RMC that lever-
ages the SMT-LIB 2.6 Theory over Strings. By formulating invariant synthesis as
a problem of solving CHCs over strings, HornStr provides a standardized, scal-
able, and automated approach to verification. Our approach enables seamless
integration of modern SMT solvers into RMC verification, bridging parameter-
ized verification and string solving in a novel way.

Our evaluation demonstrated HornStr’s effectiveness in handling complex ver-
ification tasks, including parameterized systems and string rewriting problems
(e.g., the MU puzzle). By integrating incremental solving techniques, HornStr
significantly improves the performance of string solvers, reducing computational
overhead and enhancing scalability. Additionally, our work contributes more than
10,000 new QF_S constraints, providing a valuable benchmark suite for SMT
solver evaluations.

We mention several future research avenues. The first is to extend HornStr
by handling general CHCs over strings, i.e., non-linear and monadic CHCs that

HornStr: A string Theory Solver for Constrained Horn Clauses 11

permit symbolic alphabets. This would allow one to model certain protocols,
wherein process IDs are passed around (e.g. Chang-Roberts protocol; see [26,46]).
Second, one could extend our CHC framework to other types of RMC verification
including liveness [38,36] and bisimulation [27,37].

Acknowledgement. Jiang, Lin and Markgraf are supported by the European
Research Council under the European Union’s Horizon 2020 research and in-
novation programme under number 101089343. Rümmer is supported by the
Swedish Research Council through grant 2021-06327. The authors thank the
CAV reviewers and all of the OSTRICH, cvc5, Z3, Z3-noodler, and the Z3-alpha
team developers.

12 H. Jiang et al.

References

1. Abdulla, P.A.: Regular model checking. STTT 14(2), 109–118 (2012). https://
doi.org/10.1007/s10009-011-0216-8

2. Abdulla, P.A., Atig, M.F., Chen, Y.F., Holík, L., Rezine, A., Rümmer, P., Sten-
man, J.: Norn: An smt solver for string constraints. In: International conference
on computer aided verification. pp. 462–469. Springer (2015)

3. Abdulla, P.A., Delzanno, G., Henda, N.B., Rezine, A.: Regular model checking
without transducers (on efficient verification of parameterized systems). In: Tools
and Algorithms for the Construction and Analysis of Systems: 13th International
Conference, TACAS 2007, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2007 Braga, Portugal, March 24-April
1, 2007. Proceedings 13. pp. 721–736. Springer (2007)

4. Abdulla, P.A., Haziza, F., Holík, L.: All for the price of few. In: Verification, Model
Checking, and Abstract Interpretation, 14th International Conference, VMCAI
2013, Rome, Italy, January 20-22, 2013. Proceedings. pp. 476–495 (2013)

5. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and computation 75(2), 87–106 (1987)

6. Backes, J., Bolignano, P., Cook, B., Dodge, C., Gacek, A., Luckow, K.S., Rungta,
N., Tkachuk, O., Varming, C.: Semantic-based automated reasoning for AWS ac-
cess policies using SMT. In: Bjørner, N.S., Gurfinkel, A. (eds.) 2018 Formal Meth-
ods in Computer Aided Design, FMCAD 2018, Austin, TX, USA, October 30
- November 2, 2018. pp. 1–9. IEEE (2018). https://doi.org/10.23919/FMCAD.
2018.8602994, https://doi.org/10.23919/FMCAD.2018.8602994

7. Barbosa, H., Barrett, C., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvc5: A versatile and industrial-
strength smt solver. In: Fisman, D., Rosu, G. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems. pp. 415–442. Springer International Pub-
lishing, Cham (2022)

8. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Fields of Logic and Computation II: Essays Dedicated to
Yuri Gurevich on the Occasion of His 75th Birthday, pp. 24–51. Springer (2015)

9. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular
(tree) model checking. STTT 14(2), 167–191 (2012). https://doi.org/10.1007/
s10009-011-0205-y, http://dx.doi.org/10.1007/s10009-011-0205-y

10. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:
CAV. pp. 403–418 (2000)

11. Brzozowski, J.A., McCluskey, E.J.: Signal flow graph techniques for sequential
circuit state diagrams. IEEE Transactions on Electronic Computers (2), 67–76
(1963)

12. Chen, T., Flores-Lamas, A., Hague, M., Han, Z., Hu, D., Kan, S., Lin, A.W.,
Rümmer, P., Wu, Z.: Solving string constraints with regex-dependent functions
through transducers with priorities and variables. Proc. ACM Program. Lang.
6(POPL), 1–31 (2022). https://doi.org/10.1145/3498707, https://doi.org/
10.1145/3498707

13. Chen, T., Hague, M., Lin, A., Ruemmer, P., Wu, Z.: Decision procedures for path
feasibility of string-manipulating programs with complex operations. Proceedings
of the ACM on Programming Languages 3, 1–30 (01 2019)

https://doi.org/10.1007/s10009-011-0216-8
https://doi.org/10.1007/s10009-011-0216-8
https://doi.org/10.1007/s10009-011-0216-8
https://doi.org/10.1007/s10009-011-0216-8
https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.1007/s10009-011-0205-y
https://doi.org/10.1007/s10009-011-0205-y
https://doi.org/10.1007/s10009-011-0205-y
https://doi.org/10.1007/s10009-011-0205-y
http://dx.doi.org/10.1007/s10009-011-0205-y
https://doi.org/10.1145/3498707
https://doi.org/10.1145/3498707
https://doi.org/10.1145/3498707
https://doi.org/10.1145/3498707

HornStr: A string Theory Solver for Constrained Horn Clauses 13

14. Chen, Y.F., Chocholatý, D., Havlena, V., Holík, L., Lengál, O., Síč, J.: Z3-noodler:
An automata-based string solver. In: Finkbeiner, B., Kovács, L. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems. pp. 24–33. Springer
Nature Switzerland, Cham (2024)

15. Chen, Y., Hong, C., Lin, A.W., Rümmer, P.: Learning to prove safety over param-
eterised concurrent systems. In: Stewart, D., Weissenbacher, G. (eds.) 2017 Formal
Methods in Computer Aided Design, FMCAD 2017, Vienna, Austria, October 2-6,
2017. pp. 76–83. IEEE (2017). https://doi.org/10.23919/FMCAD.2017.8102244

16. De Moura, L., Bjørner, N.: Z3: an efficient smt solver. In: Proceedings of the Theory
and Practice of Software, 14th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. p. 337–340. TACAS’08/ETAPS’08,
Springer-Verlag, Berlin, Heidelberg (2008)

17. Donaldson, A.F.: Automatic techniques for detecting and exploiting symmetry in
model checking. Ph.D. thesis, University of Glasgow (2007)

18. Esparza, J., Raskin, M., Welzel, C.: Regular Model Checking Upside-Down:
An Invariant-Based Approach. In: Klin, B., Lasota, S., Muscholl, A. (eds.)
33rd International Conference on Concurrency Theory (CONCUR 2022). Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 243, pp. 23:1–23:19.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2022).
https://doi.org/10.4230/LIPIcs.CONCUR.2022.23, https://drops.dagstuhl.
de/entities/document/10.4230/LIPIcs.CONCUR.2022.23

19. Geeraerts, G., Raskin, J.F., Van Begin, L.: Expand, enlarge and check: New al-
gorithms for the coverability problem of wsts. Journal of Computer and system
Sciences 72(1), 180–203 (2006)

20. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. ACM SIGPLAN Notices 47(6), 405–416 (2012)

21. Gribomont, E.P., Zenner, G.: Automated verification of szymanski’s algorithm.
In: International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. pp. 424–438. Springer (1998)

22. Gutiérrez, C.: Solving equations in strings: On makanin’s algorithm. In: Latin
American Symposium on Theoretical Informatics. pp. 358–373. Springer (1998)

23. Heule, M.J., Verwer, S.: Exact dfa identification using sat solvers. In: Grammatical
Inference: Theoretical Results and Applications: 10th International Colloquium,
ICGI 2010, Valencia, Spain, September 13-16, 2010. Proceedings 10. pp. 66–79.
Springer (2010)

24. Hoare, C.A.R.: Communicating sequential processes. Communications of the ACM
21(8), 666–677 (1978)

25. Hofstadter, D.R.: Gödel, Escher, Bach: An Eternal Golden Braid. Basic Books,
Inc. (1979)

26. Hong, C., Lin, A.W.: Regular abstractions for array systems. Proc. ACM Program.
Lang. 8(POPL), 638–666 (2024)

27. Hong, C., Lin, A.W., Majumdar, R., Rümmer, P.: Probabilistic bisimulation for
parameterized systems - (with applications to verifying anonymous protocols). In:
CAV (1). Lecture Notes in Computer Science, vol. 11561, pp. 455–474. Springer
(2019)

28. Israeli, A., Jalfon, M.: Uniform self-stabilizing ring orientation. Information and
Computation 104(2), 175–196 (1993)

29. Jeż, A.: Recompression: A simple and powerful technique for word equations. J.
ACM 63(1) (Feb 2016). https://doi.org/10.1145/2743014, https://doi.org/
10.1145/2743014

https://doi.org/10.23919/FMCAD.2017.8102244
https://doi.org/10.23919/FMCAD.2017.8102244
https://doi.org/10.4230/LIPIcs.CONCUR.2022.23
https://doi.org/10.4230/LIPIcs.CONCUR.2022.23
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.23
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.23
https://doi.org/10.1145/2743014
https://doi.org/10.1145/2743014
https://doi.org/10.1145/2743014
https://doi.org/10.1145/2743014

14 H. Jiang et al.

30. Jiang, H., Lin, A.W., Markgraf, O., Rümmer, P., Stan, D.: Hornstr: Invari-
ant synthesis for regular model checking as constrained horn clauses (Apr
2025). https://doi.org/10.5281/zenodo.15190404, https://doi.org/10.5281/
zenodo.15190404

31. Kan, S., Lin, A.W., Rümmer, P., Schrader, M.: Certistr: a certified string solver.
In: CPP. pp. 210–224. ACM (2022)

32. Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model
checking with rich assertional languages. Theor. Comput. Sci. 256(1-2), 93–112
(2001). https://doi.org/10.1016/S0304-3975(00)00103-1, https://doi.org/
10.1016/S0304-3975(00)00103-1

33. Kiezun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: Hampi: a solver
for string constraints. In: Proceedings of the eighteenth international symposium
on Software testing and analysis. pp. 105–116 (2009)

34. Lamport, L.: A new solution of dijkstra’s concurrent programming problem. In:
Concurrency: the works of leslie lamport, pp. 171–178 (2019)

35. Legay, A.: T(O)RMC: A tool for (omega)-regular model checking. In: CAV. pp.
548–551 (2008)

36. Lengál, O., Lin, A.W., Majumdar, R., Rümmer, P.: Fair termination for parameter-
ized probabilistic concurrent systems. In: TACAS (1). Lecture Notes in Computer
Science, vol. 10205, pp. 499–517 (2017)

37. Lin, A.W., Nguyen, T.K., Rümmer, P., Sun, J.: Regular symmetry patterns. In:
Verification, Model Checking, and Abstract Interpretation: 17th International Con-
ference, VMCAI 2016, St. Petersburg, FL, USA, January 17-19, 2016. Proceedings
17. pp. 455–475. Springer (2016)

38. Lin, A.W., Rümmer, P.: Liveness of randomised parameterised systems under ar-
bitrary schedulers. In: CAV (2). Lecture Notes in Computer Science, vol. 9780, pp.
112–133. Springer (2016)

39. Lin, A.W., Rümmer, P.: Regular model checking revisited. In: Model Checking,
Synthesis, and Learning. Lecture Notes in Computer Science, vol. 13030, pp. 97–
114. Springer (2021)

40. Lotz, K., Goel, A., Dutertre, B., Kiesl-Reiter, B., Kong, S., Majumdar, R.,
Nowotka, D.: Solving string constraints using SAT. In: Enea, C., Lal, A. (eds.)
Computer Aided Verification - 35th International Conference, CAV 2023, Paris,
France, July 17-22, 2023, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 13965, pp. 187–208. Springer (2023). https://doi.org/10.1007/
978-3-031-37703-7_9, https://doi.org/10.1007/978-3-031-37703-7_9

41. Lu, Z., Siemer, S., Jha, P., Day, J., Manea, F., Ganesh, V.: Layered and staged
monte carlo tree search for smt strategy synthesis. In: Larson, K. (ed.) Pro-
ceedings of the Thirty-Third International Joint Conference on Artificial Intel-
ligence, IJCAI-24. pp. 1907–1915. International Joint Conferences on Artificial
Intelligence Organization (8 2024). https://doi.org/10.24963/ijcai.2024/211,
https://doi.org/10.24963/ijcai.2024/211, main Track

42. Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers (1996)
43. Markgraf, O., Hong, C.D., Lin, A.W., Najib, M., Neider, D.: Parameterized syn-

thesis with safety properties. In: Programming Languages and Systems: 18th Asian
Symposium, APLAS 2020, Fukuoka, Japan, November 30–December 2, 2020, Pro-
ceedings 18. pp. 273–292. Springer (2020)

44. Mora, F., Berzish, M., Kulczynski, M., Nowotka, D., Ganesh, V.: Z3str4: A multi-
armed string solver. In: Formal Methods: 24th International Symposium, FM
2021, Virtual Event, November 20–26, 2021, Proceedings 24. pp. 389–406. Springer
(2021)

https://doi.org/10.5281/zenodo.15190404
https://doi.org/10.5281/zenodo.15190404
https://doi.org/10.5281/zenodo.15190404
https://doi.org/10.5281/zenodo.15190404
https://doi.org/10.1016/S0304-3975(00)00103-1
https://doi.org/10.1016/S0304-3975(00)00103-1
https://doi.org/10.1016/S0304-3975(00)00103-1
https://doi.org/10.1016/S0304-3975(00)00103-1
https://doi.org/10.1007/978-3-031-37703-7_9
https://doi.org/10.1007/978-3-031-37703-7_9
https://doi.org/10.1007/978-3-031-37703-7_9
https://doi.org/10.1007/978-3-031-37703-7_9
https://doi.org/10.1007/978-3-031-37703-7_9
https://doi.org/10.24963/ijcai.2024/211
https://doi.org/10.24963/ijcai.2024/211
https://doi.org/10.24963/ijcai.2024/211

HornStr: A string Theory Solver for Constrained Horn Clauses 15

45. Neider, D., Jansen, N.: Regular model checking using solver technologies and
automata learning. In: NFM. pp. 16–31 (2013). https://doi.org/10.1007/
978-3-642-38088-4_2

46. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety ver-
ification by interactive generalization. In: Krintz, C., Berger, E.D. (eds.) Pro-
ceedings of the 37th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17,
2016. pp. 614–630. ACM (2016). https://doi.org/10.1145/2908080.2908118,
https://doi.org/10.1145/2908080.2908118

47. Rungta, N.: A billion SMT queries a day (invited paper). In: Shoham, S., Vizel, Y.
(eds.) Computer Aided Verification - 34th International Conference, CAV 2022,
Haifa, Israel, August 7-10, 2022, Proceedings, Part I. Lecture Notes in Com-
puter Science, vol. 13371, pp. 3–18. Springer (2022). https://doi.org/10.1007/
978-3-031-13185-1_1, https://doi.org/10.1007/978-3-031-13185-1_1

48. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for javascript. In: 2010 IEEE Symposium on Security and
Privacy. pp. 513–528. IEEE (2010)

49. Szymanski, B.K.: Mutual exclusion revisited. In: Proceedings of the 5th Jerusalem
Conference on Information Technology, 1990.’Next Decade in Information Tech-
nology’. pp. 110–117. IEEE (1990)

50. Tateishi, T., Pistoia, M., Tripp, O.: Path-and index-sensitive string analysis based
on monadic second-order logic. ACM Transactions on Software Engineering and
Methodology (TOSEM) 22(4), 1–33 (2013)

51. Trinh, M.T., Chu, D.H., Jaffar, J.: Progressive reasoning over recursively-defined
strings. In: Chaudhuri, S., Farzan, A. (eds.) Computer Aided Verification. pp. 218–
240. Springer International Publishing, Cham (2016)

52. Vardhan, A., Viswanathan, M.: LEVER: A tool for learning based verification. In:
CAV. pp. 471–474 (2006). https://doi.org/10.1007/11817963_43

53. Wolper, P., Boigelot, B.: Verifying systems with infinite but regular state spaces.
In: CAV. pp. 88–97 (1998). https://doi.org/10.1007/BFb0028736, http://dx.
doi.org/10.1007/BFb0028736

54. Yu, F., Alkhalaf, M., Bultan, T.: Stranger: An automata-based string analysis tool
for php. In: International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. pp. 154–157. Springer (2010)

https://doi.org/10.1007/978-3-642-38088-4_2
https://doi.org/10.1007/978-3-642-38088-4_2
https://doi.org/10.1007/978-3-642-38088-4_2
https://doi.org/10.1007/978-3-642-38088-4_2
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1007/978-3-031-13185-1_1
https://doi.org/10.1007/978-3-031-13185-1_1
https://doi.org/10.1007/978-3-031-13185-1_1
https://doi.org/10.1007/978-3-031-13185-1_1
https://doi.org/10.1007/978-3-031-13185-1_1
https://doi.org/10.1007/11817963_43
https://doi.org/10.1007/11817963_43
https://doi.org/10.1007/BFb0028736
https://doi.org/10.1007/BFb0028736
http://dx.doi.org/10.1007/BFb0028736
http://dx.doi.org/10.1007/BFb0028736

	HornStr: Invariant Synthesis for Regular Model Checking as Constrained Horn Clauses

