Automatic Program Instrumentation for
Automatic Verification

CAV

Artitact
Evaluation

CAV

Artitact
Evaluation

* Jesper Amilon!, Zafer Esen?, Dilian Gurov!, * %
Christian Lidstrom!, and Philipp Riimmer?:3

! KTH Royal Institute of Technology, Stockholm, Sweden
2 Uppsala University, Sweden
3 University of Regensburg, Germany

Abstract. In deductive verification and software model checking, deal-
ing with certain specification language constructs can be problematic
when the back-end solver is not sufficiently powerful or lacks the re-
quired theories. One way to deal with this is to transform, for verification
purposes, the program to an equivalent one not using the problematic
constructs, and to reason about its correctness instead. In this paper, we
propose instrumentation as a unifying verification paradigm that sub-
sumes various existing ad-hoc approaches, has a clear formal correctness
criterion, can be applied automatically, and can transfer back witnesses
and counterexamples. We illustrate our approach on the automated ver-
ification of programs that involve quantification and aggregation opera-
tions over arrays, such as the maximum value or sum of the elements in
a given segment of the array, which are known to be difficult to reason
about automatically. We implement our approach in the MoNOCERA
tool, which is tailored to the verification of programs with aggregation,
and evaluate it on example programs, including SV-COMP programs.

1 Introduction

Overview Program specifications are often written in expressive, high-level
languages: for instance, in temporal logic [14], in first-order logic with quan-
tifiers [28], in separation logic [40], or in specification languages that provide
extended quantifiers for computing the sum or maximum value of array ele-
ments [337]. Specifications commonly also use a rich set of theories; for instance,
specifications could be written using full Peano arithmetic, as opposed to bit-
vectors or linear arithmetic used in the program. Rich specification languages
make it possible to express intended program behaviour in a succinct form, and
as a result reduce the likelihood of mistakes being introduced in specifications.

There is a gap, however, between the languages used in specifications and
the input languages of automatic verification tools. Software model checkers, in
particular, usually require specifications to be expressed using program assertions
and Boolean program expressions, and do not directly support any of the more
sophisticated language features mentioned. In fact, rich specification languages
are challenging to handle in automatic verification, since satisfiability checks

https://doi.org/10.5281/zenodo.7875416

can become undecidable (i.e., it is no longer decidable whether assertion failures
can occur on a program path), and techniques for inferring program invariants
usually focus on simple specifications only.

To bridge this gap, it is common practice to encode high-level specifica-
tions in the low-level assertion languages understood by the tools. For instance,
temporal properties can be translated to Biichi automata, and added to pro-
grams using ghost variables and assertions [I4]; quantified properties can be
replaced with non-determinism, ghost variables, or loops [I3l37]; sets used to
specify the absence of data-races can be represented using non-deterministically
initialized variables [18]. By adding ghost variables and bespoke ghost code to
programs [22], many specifications can be made effectively checkable.

The translation of specifications to assertions or ghost code is today largely
designed, or even carried out, by hand. This is an error-prone process, and for
complex specifications and programs it is very hard to ensure that the low-level
encoding of a specification faithfully models the original high-level properties to
be checked. Mistakes have been found even in industrial, very carefully developed
specifications [39], and can result in assertions that are vacuously satisfied by
any program. Naturally, the manual translation of specifications also tends to
be an ad-hoc process that does not easily generalise to other specifications.

This paper proposes the first general framework to automate the translation
of rich program specifications to simpler program assertions, using a process
called instrumentation. Our approach models the semantics of specific complex
operations using program-independent instrumentation operators, consisting of
(manually designed) rewriting rules that define how the evaluation of the opera-
tor can be achieved using simpler program statements and ghost variables. The
instrumentation approach is flexible enough to cover a wide range of different
operators, including operators that are best handled by weaving their evaluation
into the program to be analysed. While instrumentation operators are manually
written, their application to programs can be performed in a fully automatic way
by means of a search procedure. The soundness of an instrumentation operator is
shown formally, once and for all, by providing an instrumentation invariant that
ensures that the operator can never be used to show correctness of an incorrect
program.

Additional instrumentation operator definitions, correctness proofs, and de-
tailed evaluation results can be found in the accompanying extended report [4].

Motivating Example We illustrate our approach on the computation of ¢ri-
angular numbers sy = (N?+ N)/2, see left-hand side of [Figure lL For reasons of
presentation, the program has been normalised by representing the square N*N
using an auxiliary variable NN. While mathematically simple, verifying the post-
condition s == (NN+N)/2 in the program turns out to be challenging even for
state-of-the-art model checkers, as such tools are usually thrown off course by
the non-linear term N*N. Computing the value of NN by adding a loop in line 16
is not sufficient for most tools either, since the program in any case requires

1 // Triangular numbers

2 i = 0; /*Ax/ s = 0; /*Bx*x/
3 assume (N>0) ;

4+ while(i < N) {

6

8 i=1i + 1, /*C*/
9

10

11 s = s + 1;

12 }

13

14

15 NN = N*N; /*Dx/

17 assert (s == (NN+N)/2);

// Instrumented program
i=0; s=0; x_sq=0; x_shad=0;
assume (N>0) ;
while(i < N) {
// Begin-instrumentation
assert (i == x_shad);
X_sq = x_sq + 2xi + 1;
i =i + 1;
x_shad = i;
// End-instrumentation

s = s + i,

> ¥

s // Begin-instrumentation

assert (N == x_shad);
s NN = x_sq;

// End-instrumentation
7 assert (s == (NN+N)/2);

Fig. 1: Program computing triangular numbers, and its instrumented counterpart

a non-linear invariant 0 <= i <= N && 2*s == i*i + i to be derived for the
loop in lines 4-12.

The insight needed to elegantly verify the program is that the value i*i can
be tracked during the program execution using a ghost variable x_sq. For this,
the program is instrumented to maintain the relationship x_sq == i*i: initially,
i == x_sq == 0, and each time the value of i is modified, also the variable x_sq
is updated accordingly. With the value x_sq == ix*i available, both the loop
invariant and the post-condition turn into formulas over linear arithmetic, and
program verification becomes largely straightforward. The challenge, of course,
is to discover this program transformation automatically, and to guarantee the
soundness of the process. For the example, the transformed program is shown
on the right-hand side of and discussed in the next paragraphs.

Our method splits the process of program instrumentation into two parts:
(i) choosing an instrumentation operator, which is defined manually, designed to
be program-independent, and induces a space of possible program transforma-
tions; and (ii) carrying out an automatic application strategy to find, among the
possible program transformations, one that enables verification of a program.

An instrumentation operator for tracking squares is shown in and
consists of the declaration of two ghost variables (x_sq, x_shad) with initial
value 0, respectively; four rules for rewriting program statements; and the in-
strumentation invariant witnessing correctness of the operator. The rewrite rules
use formal variables x, y, which can represent arbitrary variables in the program
(i, N, NN). An application of the operator to a program will declare the ghost
variables in the form of global variables, and then rewrite some chosen set of pro-
gram statements using the provided rules. Since the statements to be rewritten

— 2square (Instrumentation operator)

— Ggguare (Ghost variables)
X sq,x_ shad: Int

init(x_sq) = 0, init(x_shad) = 0

— Rsquare (Rewrite rules)
T=o ~ x=a;x_sq=0’; x_shad =z (R1)

r=x+a ~» assert(x==x_shad); (R2)
x_sq=x_sq+2a*xx+a’; r=x+a; x_shad==z

r=a*xx ~» assert(z==x_shad); (R3)

X_sq= a? x x_sq; r=«a*x; x_shad=2x

y=x*x ~» assert(zr==x_shad); y=x_sq (R4)

— Tsquare (Instrumentation invariant)
x_sq=x_shad?

Fig.2: Definition of an instrumentation operator {2,quqre for tracking squares

can be chosen arbitrarily, and since moreover multiple rewrite rules might apply
to some statements, rewriting can result in many different variants of a program.
In the example, we rewrite the assignments C, D of the left-hand side program
using rewrite rules (R2) and (R4), respectively, resulting in the instrumented
and correct program on the right-hand side.

Instrumentation operators are designed to be sound, which means that rewrit-
ing a wrong selection of program statements might lead to an instrumented pro-
gram that cannot be verified, i.e., in which assertions might fail, but instrumen-
tation can never turn an incorrect source program into a correct instrumented
program. This opens up the possibility to systematically search for the right
program instrumentation. We propose a counterexample-guided algorithm for
this purpose, which starts from some arbitrarily chosen instrumentation, checks
whether the instrumented program can be verified, and otherwise attempts to
fix the instrumentation using a refinement loop. As soon as a verifiable instru-
mented program has been found, the search can stop and the correctness of the
original program has been shown.

The concept of instrumentation invariants is essential for guaranteeing sound-
ness of an operator. Instrumentation invariants are formulas that can (only) re-
fer to the ghost variables introduced by an instrumentation operator, and are
formulated in such a way that they hold in every reachable state of every in-
strumented program. To maintain their invariants, instrumentation operators use
shadow variables that duplicate the values of program variables. In the operator
in the purpose of the shadow variable x_shad is to reproduce the value
of the program variable whose square is tracked (i). The rewriting rules intro-

duce guards to detect incorrect instrumentation (the assertions in (R2), (R3),
(R4)), which are particular cases in which some update of a relevant variable
was missed and not correctly instrumented. The use of shadow variables and
guards make instrumentation operators very flexible; in our example, note that
instrumentation tracks the square of the value of i during the loop, but is also
used later to simplify the expression N*N. This is possible because of the instru-
mentation invariant and because i == N holds after termination of the loop,
which is verified through the assertion introduced in line 14.

Contributions and Outline The operator shown in is simple, and
does not apply to all programs, but it can easily be generalised to other arith-
metic operators and program statements. The framework presented in this pa-
per provides the foundation for developing a (extendable) library of formally
verified instrumentation operators. In the scope of this paper, we focus on two
specification constructs that have been identified as particularly challenging in
the literature: existential and universal quantifiers over arrays, and aggrega-
tion (or extended quantifiers), which includes computing the sum or maximum
value of elements in an array. Our experiments on benchmarks taken from the
SV-COMP [8] show that even relatively simple instrumentation operators can
significantly extend the capabilities of a software model checker, and often make
the automatic verification of otherwise hard specifications easy.

The contributions of the paper are: (i) a general framework for program
instrumentation, which defines a space of program transformations that work by
rewriting individual statements (Section 2)); (ii) an application strategy search
algorithm in this space, for a given program (Section 3)); (iii) two instantiations
of the framework—one for instrumentation operators to handle specifications
with quantifiers , and one for extended quantifiers ;
(iv) machine-checked proofs of the correctness of the instrumentation operators
for quantifiers V and the extended quantifier \max; (v) a new werification tool,
MONOCERA, that is tailored to the verification of programs with aggregation;
and (vi) an evaluation of our method and tool on a set of examples, including

such from SV-COMP [§] (Section 5).

2 Instrumentation Framework

The next two sections formally introduce the instrumentation framework. Later,
we instantiate the framework for quantification and aggregation over arrays. We
split the instrumentation process into two parts:

1. An instrumentation operator that defines how to rewrite program statements
with the purpose of eliminating language constructs that are difficult to
reason about automatically, but leaves the choice of which occurrences of
these statements to rewrite to the second part (this section).

2. An application strategy for the instrumentation operator, which can be im-
plemented using heuristics or systematic search, among others. The strategy

Table 1: Syntax of the core language.

(Type) ::= Int |Bool | Array (Type)
(Exzpr) == (DecimalNumber) | true | false | (Variable)
| (Bzpr) == (Ezpr) | (Ezpr) <= (Ezpr) | !(Ezpr) | (Ezpr) && (Ezpr)
| (Bapr) 11 (Bapr) | (Bepr) + (Bapr) | (Eapr) * (Bepr)
| select((Expr),(Expr)) | store((Expr),(Expr),(Expr))
(Prog) == skip | (Variable) = (Ezpr) | (Prog); (Prog) | while ({Fzpr)) (Prog)
| assert((Expr)) | assume((Ezpr)) | if ((Ezpr)) (Prog) else (Prog)

is responsible for selecting the right (if any) program instrumentation from
the many possible ones, is dedicated to the second part.

Even though instrumentation operators are non-deterministic, we shall guaran-
tee their soundness: if the original program has a failing assertion, so will any
instrumented program, regardless of the chosen application strategy; that is,
instrumentation of an incorrect program will never yield a correct program.

We shall also guarantee a weak form of completeness, to the effect that if an
assertion that has not been added to the program by the instrumentation fails
in the instrumented program, then it will also fail in the original program. As a
result, any counterexample (for such an assertion) produced when verifying the
instrumented program can be transformed into a counterexample for the original
program.

2.1 The Core Language

While our implementation works on programs represented as constrained Horn
clauses [12], i.e., is language-agnostic, for readability purposes we present our
approach in the setting of an imperative core programming language with data-
types for unbounded integers, Booleans, and arrays, and assert and assume
statements. The language is deliberately kept simple, but is still close to stan-
dard C. The main exception is the semantics of arrays: they are defined here
to be functional and therefore represent a value type. Arrays have integers as
index type and are unbounded, and their signature and semantics are otherwise
borrowed from the SMT-LIB theory of extensional arrays [6]:

— Reading the value of an array a at index i: select(a, 1i);
— Updating an array a at index i with a new value x: store(a, i, x).

The complete syntax of the core language is given in Programs are
written using a vocabulary X of typed program variables; the typing rules of the
language are given in [4]. As syntactic sugar, we sometimes write a[i] instead
of select(a, i), and a[i] = x instead of a = store(a, i, x).

We denote by D, the domain of a program type o. The domain of an array
type Array o is the set of functions f : Z — D,.

Semantics. We assume the Flanagan-Saxe extended execution model of pro-
grams with assume and assert statements (see, e.g., [23]), in which executing
an assert statement with an argument that evaluates to false fails, i.e., termi-
nates abnormally. An assume statement with an argument that evaluates to false
has the same semantics as a non-terminating loop. Partial correctness proper-
ties of programs are expressed using Hoare triples {Pre} P {Post}, which state
that an execution of P, starting in a state satisfying Pre, never fails, and may
only terminate in states that satisfy Post. As usual, a program P is considered
(partially) correct if the Hoare triple {true} P {true} holds.

The evaluation of program expressions is modelled using a function [-]s that
maps program expressions t of type o to their value [t]s € D, in the state s.

2.2 Instrumentation Operators

An instrumentation operator defines schemes to rewrite programs while preserv-
ing the meaning of the existing program assertions. Without loss of generality,
we restrict program rewriting to assignment statements. Instrumentation can
introduce ghost state by adding arbitrary fresh variables to the program. The
main part of an instrumentation consists of rewrite rules, which are schematic
rules r = t ~» s, where the meta-variable r ranges over program variables, ¢ is
an expression that can contain further meta-variables, and s is a schematic pro-
gram in which the meta-variables from r = ¢t might occur. Any assignment that
matches r = ¢t can be rewritten to s.

Definition 1 (Instrumentation Operator). An instrumentation operator is
a tuple 2 = (G, R, I), where:

(i) G = {(x1,init1), ..., (xk, inity)) is a tuple of pairs of ghost variables and
their initial values;

(ii) R is a set of rewrite rules r =t ~ s, where s is a program operating on the
ghost variables x1,...,xx (and containing meta-variables from r =t);

(iii) I is a formula over the ghost variables x1,...,xy, called the instrumenta-
tion invariant.

The rewrite rules R and the invariant I must adhere to the following constraints:

1. The instrumentation invariant I is satisfied by the initial ghost values, i.e.,
it holds in the state {x1 — nity, ..., X —> initg}.
2. For all rewrites r =t ~ s € R the following hold:
(a) s terminates (normally or abnormally) for pre-states satisfying I, as-
suming that all meta-variables are ordinary program variables.
(b) s does not assign to variables other than r or the ghost variables x1, . . ., Xj.
(c) s preserves the instrumentation invariant: {I} s' {I}, where s’ is s with
every assert (e) statement replaced by an assume(e) statement.
(d) s preserves the semantics of the assignment r = t: the Hoare triple
{I} z=t; s {z=r}, where z is a fresh variable, holds.

The conditions imposed in the definition ensure that all instrumentations
are correct, in the sense that they are sound and weakly complete, as we show
below. In particular, the instrumentation invariant guarantees that the rewrites
of program statements are semantics-preserving w.r.t. the original program, and
thus, the execution of any assert statement of the original program has the
same effect before and after instrumentation. Observe that the conditions can
themselves be deductively verified to hold for each concrete instrumentation
operator, and that this check is independent of the programs to be instrumented,
so that an instrumentation operator can be proven correct once and for all.

An instrumentation operator {2 does itself not define which occurrences of
program statements are to be rewritten, but only how they are rewritten. Given
a program P and the operator {2, an instrumented program P’ is derived by
carrying out the following two steps: (i) variables x1, ..., x; and the assignments
X1 = inity; ...; Xg = init, are added at the beginning of the program, and
(ii) some of the assignments in P, to which a rewriting rule r = ¢t ~» s in 2 is
applicable, are replaced by s, substituting meta-variables with the actual terms
occurring in the assignment. We denote by 2(P) the set of all instrumented
programs P’ that can be derived in this way. An example of an instrumentation
operator and its application was shown |[Figure 1| and [Figure 2|

2.3 Instrumentation Correctness

Verification of an instrumented program produces one of two possible results: a
witness if verification is successful, or a counterexample otherwise. A witness con-
sists of the inductive invariants needed to verify the program, and is presented in
the context of the programming language: it is translated back from the back-end
theory used by the verification tool, and is a formula over the program variables
and the ghost variables added during instrumentation. A counterexample is an
execution trace leading to a failing assertion.

Definition 2 (Soundness). An instrumentation operator {2 is called sound
if for every program P and instrumented program P’ € 2(P), whenever there
is an execution of P where some assert statement fails, then there also is an
ezecution of P’ where some assert statement fails.

Equivalently, existence of a witness for an instrumented program entails ex-
istence of a witness for the original program, in the form of a set of inductive
invariants solely over the program variables. Notably, because of the semantics-
preserving nature of the rewrites under the instrumentation invariant, a witness
for the original program can be derived from one for the instrumented program.
One such back-translation is to add the instrumentation invariant as a conjunct
to the original witness, and to existentially quantify over the ghost variables.

FEzxzample. To illustrate the back-translation, we return to the instrumentation

operator from and the example program from The witness

produced by our verification tool in this case is the formula:

i=x shadAx_sq+x shad =25 AN>iAN>1A2s>iAi>0

After conjoining the instrumentation invariant x _sq = x_shad? and existen-
tially quantifying over the involved ghost variables, we obtain an inductive in-
variant that is sufficient to verify the original program:

Elmsqa Tshad- (1 = Zshad A xsq + Tshad = ETA

N>iAN>1A28>iA1>0A 2 = T2had)

Definition 3 (Weak Completeness). The operator (2 is called weakly com-
plete if for every program P and instrumented program P’ € Q(P), whenever an
assert statement that has not been added to the program by the instrumentation
fails in the instrumented program P’, then it also fails in the original program P.

Similarly to the back-translation of invariants, when verification fails, counterex-
amples for assertions of the original program, found during verification of the
instrumented program, can be translated back to counterexamples for the orig-
inal program. We thus obtain the following result.

Theorem 1 (Soundness and weak completeness). Every instrumentation
operator §2 is sound and weakly complete.

Proof. Let 2 = (G, R,I) be an instrumentation operator. Since I is a formula
over ghost variables only, which holds initially and is preserved by all rewrites,
I is an invariant of the fully instrumented program. This entails that rewrites of
assignments are semantics-preserving. Furthermore, since instrumentation code
only assigns to ghost variables or to 7 (i.e., the left-hand side of the original state-
ment), program variables have the same valuation in the instrumented program
as in the original one. Furthermore, since all rewrites are terminating under I,
the instrumented program will terminate if and only if the original program does.

In the case when verification succeeds, and a witness is produced, weak com-
pleteness follows vacuously. A witness consists of the inductive invariants suffi-
cient to verify the instrumented program. Thus, they are also sufficient to verify
the assertions existing in the original program, since assertions are not rewrit-
ten and all program variables have the same valuation in the original and the
instrumented programs. Since a witness for the instrumented program can be
back-translated to a witness for the original program, any failing assertion in the
original program must also fail after instrumentation, and 2 is therefore sound.

In the case when verification fails, soundness follows vacuously, and if the
failing assertion was added during instrumentation, also weak completeness fol-
lows. If the assertion existed in the original program, since such assertions are
not rewritten, and since program variables have the same valuation in the in-
strumented program as in the original program, then any counterexample for the
instrumented program is also a counterexample for the original program, when
projected onto the program variables. O

Input: Program P; statements S; instrumentation space R; oracle IsCorrect.
Result: Instrumentation r € R with IsCorrect(P,); Incorrect; or Inconclusive.

1 begin

2 Cand < R;

3 while Cand # 0 do

4 pick r € Cand;

5 if IsCorrect(P,) then

6 ‘ return r;

7 else

8 cex < counterexample path for Py;

9 if failing assertion in cex also exists in P then

/* cex is also a counterexample for P */

10 return Incorrect;

11 else

/* instrumentation on cer may have been incorrect */

12 C’ + {p € C| ins,(p) occurs on cez};

13 Cand + Cand \ {r' € Cand | r(s) =r'(s) for allp € C'};

14 end

15 end
16 end
17 return Inconclusive;
18 end

Algorithm 1: Counterexample-guided instrumentation search

3 Instrumentation Application Strategies

We will now define a counterexample-guided search procedure to discover appli-
cations of instrumentation operators that make it possible to verify a program.

For our algorithm, we assume that we are given an oracle IsCorrect that is
able to check the correctness of programs after instrumentation. Such an ora-
cle could be approximated, for instance, using a software model checker. The
oracle is free to ignore the complex functions we are trying to eliminate by in-
strumentation; for instance, in the oracle can over-approximate the
term N*N by assuming that it can have any value. We further assume that C
is the set of control points of a program P corresponding to the statements to
which a given set of instrumentation operators can be applied. For each control
point p € C, let Q(p) be the set of rewrite rules applicable to the statement
at p, including also a distinguished value 1 that expresses that p is not modi-
fied. For the program in for instance, the choices could be defined by
Q(4) = Q(B) = {(R1), 1}, Q(C) = {(R2), L}, and Q(D) = {(R4), L}, referring
to the rules in Any function r : C — o Q(p) with r(p) € Q(p)
will then define one possible program instrumentation. We will denote the set
of well-typed functions C' — Upec Q(p) by R, and the program obtained by
rewriting P according to 7 € R by P,.. We further denote the control point in
P, corresponding to some p € C in P by ins,(p).

10

Table 2: Extension of the core language with quantified expressions.

(Exzpry == (A((Variable),(Variable)) .(Expr)) ((Ezpr), (Ezpr)) |
forall ((Ezpr), (Ezpr),(Ezpr),A((Variable), { Variable)) .(Ezpr)) |
exists ((Ezpr), (Ezpr), (Ezpr) , \((Variable), (Variable)) .(Ezpr))

presents our algorithm to search for instrumentations that are
sufficient to verify a program P. The algorithm maintains a set Cand C R of
remaining ways to instrument P, and in each loop considers one of the remaining
elements r € Cand (line 4). If the oracle manages to verify P, in line 5, due to
soundness of instrumentation the correctness of P has been shown (line 6); if
P, is incorrect, there has to be a counterexample ending with a failing assertion
(line 8). There are two possible causes of assertion failures: if the failing assertion
in P, already existed in P, then due to the weak completeness of instrumentation
also P has to be incorrect (line 10). Otherwise, the program instrumentation
has to be refined, and for this from Cand we remove all instrumentations r’ that
agree with r regarding the instrumentation of the statements occurring in the
counterexample (line 13).

Since R is finite, and at least one element of Cand is eliminated in each
iteration, the refinement loop terminates. The set Cand can be exponentially
big, however, and therefore should be represented symbolically (using BDDs, or
using an SMT solver managing the set of blocking constraints from line 13).

We can observe soundness and completeness of the algorithm w.r.t. the con-
sidered instrumentation operators (proof in [4]):

Lemma 1 (Correctness of [Algorithm 1)). If[Algorithm 1| returns an instru-
mentation r € R, then P, and P are correct. If[Algorithm 1| returns Incorrect,
then P is incorrect. If there is v € R such that P, is correct, then
will return v’ such that P, is correct.

4 Instrumentation Operators for Arrays

4.1 Instrumentation Operators for Quantification over Arrays

To handle quantifiers in a programming setting, we extend the language defined
in by adding quantified expressions over arrays, as shown in As
seen, we also extend the language with a lambda expression over two variables.
The rationale for this is that many quantified properties can be expressed as a
binary predicate with the first argument corresponding to the value of an element
and the second to the index. This allows us to express properties over both the
value of an element and its index. For example, we can express that each element
should be equal to its index, as is done in the example program in In
the program, each element in the array is assigned the value corresponding to
its index, after which it is asserted that this property indeed holds.

11

2

Int N = nondet;
assume (N > 0);

; Array Int a = const(0, N);

4

Int i = 0;

5 while(i < N) {

6

9

0

a = store(a, i, 1i);

i=1i+ 1;
}
Bool b = forall(a, 0, N, A(i,x).(x == 1i));
assert (b) ;

Fig. 3: Example of program to be verified using a quantified assert statement.

Using P(xg,i¢) as shorthand for (A(x,1).P) (xg,1ip), the new expressions
can be defined formally as:

[forall(a, 1, u, A(x,i).P)]s = Vi€ [1,u). [P(alil,i)]s
[exists(a, 1, u, A(x,1).P)]s 3i € [1,u). [P(alil,)]s

Note that the types of x and a must be compatible and P be a Boolean-valued
expression.

To handle programs such as the one in we turn to the instrumenta-
tion framework outlined in[Section 2.2] which we use here to define an instrumen-
tation operator for universal quantification. The general idea is to instrument
programs with a ghost variable, tracking if some predicate holds for all elements
in an interval of the array, with shadow variables representing the tracked array,
and the bounds of the interval. Naturally, an instrumentation operator for exis-
tential quantification can be defined in a similar fashion. For simplicity, we shall
assume a normal form of programs, into which every program can be rewrit-
ten by introducing additional variables. In the normal form, store, select and
forall can only occur in simple assignment statements. For example, stores are
restricted to occur in statements of the form: a’> = store(a, i, x).

Over such normalised programs, and for a universally quantified expression
forall(a, 1, u, A(x,1i)(P)), we define the instrumentation operator {2y p =
(Gv,p, Ry,p, Iy,p) as shown in over four ghost variables. The array
over which quantification occurs is tracked by qu ar and the variables qu_1lo,
qu_hi represent the bounds of the currently tracked interval. The result of the
quantified expression is tracked by qu P, whose value is true iff P holds for
all elements in a in the interval [qu_lo,qu_hi). The rewrite rules for stores,
selects and assignments of universally quantified expressions are then defined
as follows. For stores, the first if-branch resets the tracking to the one element
interval [i,1i+ 1) when accessing elements far outside of the currently tracked
interval, or if we are tracking the empty interval (as is the case at initialisation).
If an access occurs immediately adjacent to the currently tracked interval (e.g.,
if i = qu_lo—1), then that element is added to the tracked interval, and the

12

— 2y p (Instrumentation operator)

— Gv,p (Ghost variables)
qu_ar: Array Int, qu lo, qu _hi: Int, qu P: Bool

init(qu_ar) = [], init(qu_lo) = 0, init(qu_hi) = 0
init(qu_P) = true

— Rv,p (Rewrite rules)
a’ = store(a, i, x); ~

1 a’ = store(a, i, x);

2 if (qu_lo == qu_hi || i < qu_lo - 1 [| i > qu_hi ||

3 (P(x, i) && 'qu_P && qu_lo <= i && i < qu_hi)) {

A qu_lo = ij; // Reset, because either:

5 qu_hi = i + 1; // - tracking empty interval

6 qu_P = P(x, 1i); // - storing far outside interval
7 } else { // - possibly overwriting sole false
8 assert (qu_ar == a);

9 qu_P = qu_P && P(x, 1i);

10 if (qu_lo - 1 == i) {

11 qu_lo = ij; // Decrement lower bound by 1
12 } else if (qu_hi == i) {
13 qu_hi = i + 1; // Increment upper bound by 1
14 }

15 }

16 qu_ar = a’;

x = select(a, i); ~» similar to store

b = forall(a, 1, u,Ax.P); ~

1 if (u <= 1) {

2 b = true;

3 } else {

1 if (qu_P) {

5 assert(qu_ar == a && 1 >= qu_lo && u <= qu_hi);
else {

assert(qu_ar == a && 1 <= qu_lo && u >= qu_hi);

%
o W

= qu_P;
10 }

— Iy p (Instrumentation Invariant)
qu lo=qu hiV
(Qu lo<qu hiAqu P=forall(qu ar,qu lo,qu hi,\(x,1).P))

Fig. 4: Definition of an instrumentation operator for universal quantification

value of qu_P is updated to also account for the value of P at index i. If instead
the access is within the tracked interval, then we either reset the interval (if
qu_P is false) or keep the interval unchanged (if qu P is true). Rewrites of
selects are similar to stores, except tracking does not need to be reset when
reading inside the tracked interval. For rewrites of quantified expressions, if the
quantified interval is empty, b is assigned true. Otherwise, assertions check that
the tracked interval matches the quantified interval before assigning t to qu_P.

13

If qu P is true, then it is sufficient that quantification occurs over a sub-interval
of the tracked interval, and vice versa if qu_P is false.

The result of applying 2y p to the program in is shown in [4]. As
exhibited by the experiments in[Section 5] the resulting program is in many cases
easier to verify by state-of-the-art verification tools. Note that the instrumenta-
tion operator defined is only one possibility among many. For example, one could
track several ranges simultaneously over the array in question, or also track the
index of some element in the array over which P holds, or make different choices
on stores outside of the tracked interval.

The following lemma establishes correctness of the instrumentation operator.
The proof can be found in [4].

Lemma 2 (Correctness of {2y p). {2y p is an instrumentation operator, i.e.,

it adheres to the constraints imposed in |[Definition 1}

4.2 Instrumentation Operators for Aggregation over Arrays

We now turn to the verification of safety properties with aggregation. As ex-
amples of aggregation, we consider in particular the operators \sum and \max,
calculating the sum and maximum value of an array, respectively. Aggregation
is supported in the form of extended quantifiers in the specification languages
JML [33] and ACSL [7], and is frequently needed for the specification of func-
tional correctness properties. Although commonly used, most verification tools
do not support aggregation, so that properties involving aggregation have to
be manually rewritten using standard quantifiers, pure recursive functions, or
ghost code involving loops. This reduction step is error-prone, and represents an
additional complication for automatic verification approaches, but can be han-
dled elegantly using the instrumentation framework. For generality, we formalise
aggregation over arrays with the help of monoid homomorphisms.

Definition 4 (Monoid). A monoid is a structure (M, o,e) consisting of a non-
empty set M, a binary associative operation o on M, and a neutral element e €
M. A monoid is commutative if o is commutative. A monoid is cancellative if
xoy=uwaxoz impliesy =z, and yox = zox implies y = z, for all x,y,z € M.

For aggregation, we model finite intervals of arrays using the cancellative
monoid (D*, -, €) of finite sequences over some data domain D. The concatenation
operator - is non-commutative.

Definition 5 (Monoid Homomorphism). A monoid homomorphism is a
function h : My — My between monoids (M, 01,e1) and (Ma,09,e2) with the
properties h(x o1 y) = h(x) oa h(y) and h(ey) = es.

Ordinary quantifiers can be modelled as homormorphisms D* — B, so that
the instrumentation in this section strictly generalizes[Section 4.1 A second clas-
sical example is the computation of the mazimum (similarly, minimum) value
in a sequence. For the domain of integers, the natural monoid to use is the

14

algebra (Z_s, max, —o0) of integers extended with —ooE| and the homomor-
phism Anax is generated by mapping singleton sequences (n) to the value n. A
third example is the computation of the element sum of an integer sequence,
corresponding to the monoid (Z,+,0) and the homomorphism hg,y,. Similarly,
the number of occurrences of some element can be computed. The considered
monoid in the last two cases of aggregation is even cancellative.

Programming Language with Aggregation We extend our core program-
ming language with expressions aggregate,, ((Ezpr) , (Expr),{Expr)), and use
monoid homomorphisms to formalise them. Recall that we denote by D, the do-
main of a program type o.

Definition 6. Let Array o be an array type, o a program type, M a commuta-
tive monoid that is a subset of D,,,, and h : D} — M a monoid homomorphism.
Let furthermore ar be an expression of type Array o, and l and u integer expres-
sions. Then, aggregatey, , (ar,l,u) is an expression of type onr, with semantics
defined by:

[aggregatey, , (ar,l,w)]s = h({[ar]s([1]s), [ar]s([1s+1), .-, [ar]s([u]s—1)))

Intuitively, the expression aggregate,, ; (ar,l,u) denotes the result of applying
the homomorphism A to the slice ar[l u— 1] of the array ar. As a convention,
in case u < | we assume that the result of aggregate is h(()). As with array
accesses, we assume also that aggregate only occurs in normalised statements
of the form t = aggregate,,, (ar,l,u).

In our examples, we use derived operations as found in ACSL: \max as short-
hand notation for aggregate(z_oo’nmx’_oo)’hmax and \sum as short-hand nota-
tion for aggregate ; , ¢ 5

sum

An Instrumentation Operator for Maximum For \max, an operator {2, =
(Gmazs Rmaz, Imaz) can be defined similarly to the operator 2y p from
tion 4.1] in that the maximum value in a particular interval of the array is

tracked. One key difference is that an extra ghost variable ag_max_idx is added

to track an array index where the maximum value of the array interval is stored,

in order to not have to reset tracking on every store inside of the tracked interval.

A complete definition is proposed in [4].

An instrumentation operator for Sum Cancellative aggregation is aggrega-
tion based on a cancellative monoid. Cancellative aggregation makes it possible
to track aggregate values faithfully even when storing inside of the tracked in-
terval, unlike \max and universal quantification. An example of a cancellative
operator is the aggregate \sum.

4 For machine integers, —oo could be replaced with INT_MIN.

® With a slight abuse of the framework, we assume that Z _ . is represented by the pro-
gram type Int, mapping —oo to some fixed integer number. More elegant solutions
are not difficult to devise, but add unnecessary complexity.

15

— 24um (Instrumentation operator)

— Guum (Ghost variables)
ag lo, ag hi, ag _sum: Int, ag ar: Array Int
init(ag lo) = init(ag hi) = init(ag sum) = 0, init(ag_ar) = []
— Roum (Rewrite rules)
a’ = store(a, i, x) ~»
1 a’ = store(a, i, x);
2> if (ag_lo == ag_hi || i < ag_lo - 1 || i > ag_hi) {
0 ag_lo = i // Reset, because either:
4 ag_hi =i+ 1; // - tracking empty interval
5 ag_sum = x; // - storing far outside interval
6 } else {
7 assert (ag_ar == a);
8 if (ag_lo <= i && i < ag_hi) {
9 // Subtract previous value from sum
10 ag_sum = ag_sum - select(ag_ar, i);
11 } else if (ag_lo - 1 == i) {
12 ag_lo = ij; // Decrease lower bound by 1
13 } else if (ag_hi == i) {
14 ag_hi = 1i + 1; // Increase upper bound by 1
15 }
16 ag_sum = ag_sum + X; // Add new value to sum
17 3}
18 ag_ar = a’;
x = select(a, i) ~> code similar to rewrites of store
r = \sum(a, 1, u) ~
1 if (u <= 1) {
2 t = 03
3 } else {
4 assert(ag_ar == a && 1 == ag_lo && u == ag_hi);
5 t = ag_sum;
6 }
— ILium (Instrumentation invariant)
ag lo=ag hiVag sum= sum(ag ar,ag lo,ag hi)

Fig. 5: Definition of an instrumentation operator (2, for Sum

The instrumentation operator 2sum = (Gsums Rsum, Lsum) is defined in
The instrumentation code tracks the sum of values in the interval, and
when increasing the bounds of the tracked interval, the new values are simply
added to the tracked sum. Since \sum is cancellative, when storing inside of the
tracked interval, the previous value at the index being written to is first sub-
tracted from the sum, before adding the new value, ensuring that the correct
aggregate value is computed. The following correctness result is proved in [4].

Lemma 3 (Correctness of Q). Qsum 15 an instrumentation operator, i.e.,

it adheres to the constraints imposed in|Definition 1|

16

Deductive Verification of Instrumentation Operators As stated in
instrumentation operators may be verified independently of the pro-
grams to be instrumented. The operators described in this paper, i.e. square,
universal quantification, maximum, and sum, have been verified in the verifica-
tion tool Frama-C [I5]. The verified instrumentations are adaptations for the
C language semantics and execution model. More specifically, the adapted oper-
ators assume C native arrays, rather than functional ones.

5 Evaluation

5.1 Implementation

To evaluate our instrumentation framework, we have implemented the instru-
mentation operators for quantifiers and aggregation over arrays. The implemen-
tation is done over constrained Horn clauses (CHCs), by adding the rewrite rules
defined into ELDARICA [30], an open-source solver for CHCs. We also
implemented the automatic application of the instrumentation operators, largely
following but with a few minor changes due to the CHC setting.
The CHC setting makes our implementation available to various CHC-based ver-
ification tools, for instance JAYHORN (Java) [32], KorN (C) [I9], RusSTHORN
(Rust) [36], SEAHORN (C/LLVM) [26] and TRICERA (C) [20].

In order to evaluate our approach at the level of C programs, we extended
TRICERA, an open-source assertion-based model checker that translates C pro-
grams into a set of CHCs and relies on ELDARICA as back-end solver. TRICERA
is extended to parse quantifiers and aggregation operators in its input C pro-
grams and to encode them as part of the translation into CHCs. We call the
resulting toolchain MONOCERA. An artefact that includes MONOCERA and the
benchmarks is available online [5].

To handle complicated access patterns, for instance a program processing
an array from the beginning and end at the same time, the implementation
can apply multiple instrumentation operators simultaneously; the number of

operators is incremented when returns Inconclusive.

5.2 Experiments and Comparisons

To assess our implementation, we assembled a test suite and carried out ex-
periments comparing MONOCERA with the state-of-the-art C model checkers
CPACHECKER 2.1.1 [11], SEAHORN 10.0.0 [26] and TRICERA 0.2. It should be
noted that deductive verification frameworks, such as Dafny and Frama-C, can
handle, for example, the program in if they are provided with a man-
ually written loop invariant; however, since MONOCERA relies on automatic
techniques for invariant inference, we only benchmark against tools using simi-
lar automatic techniques. We also excluded VERIABs [I, since its licence does
not permit its use for scientific evaluation.

The tools were set up, as far as possible, with equivalent configurations; for
instance, to use the SMT-LIB theory of arrays [6] in order to model C arrays, and

17

Verification results Ver. time Inst. space Inst. steps
#Tests MoNo TR1 SEA CPA Min Max Avg Max Avg Max Avg

min 17 9 2 2 2 22 59 33 27 11 55 24
max 12 8 2 3 3 21 285 76 108 21 96 30
sum 26 16 3 3 3 26 245 78 2916 188 284 36
forall 96 30 1 0 2 14 236 91 59049 2446 334 59

Table 3: Results for MONOCERA (MoONO), TRICERA (TRI), SEAHORN (SEA),
and CPACHECKER (CPA). For MONOCERA, also statistics are given for verifi-
cation time (s), size of the instrumentation search space, and search iterations.

a mathematical (as opposed to machine) semantics of integers. CPACHECKER
was configured to use k-induction [10], which was the only configuration that
worked in our tests using mathematical integers. SEAHORN was run using the
default settings. All tests were run on a Linux machine with AMD Opteron 2220
SE @ 2.8 GHz and 6 GB RAM with a timeout of 300 seconds.

Test Suite. The comparison includes a set of programs calculating properties
related to the quantification and aggregation properties over arrays. The bench-
marks and verification results are summarised in [Table 3l The benchmark suite
contains programs ranging between 16 to 117 LOC and is comprised of two parts:
(i) 117 programs taken from the SV-COMP repository [9], and (ii) 26 programs
crafted by the authors (min: 6, max: 8, sum: 9, forall: 3).

To construct the SV-COMP benchmark set for MONOCERA we gathered
all test files from the directories prefixed with array or loop, and singled out
programs containing some assert statement that could be rewritten using a quan-
tifier or an aggregation operator over a single array. For example, loops

for (int i = 0; i < N; i++) assert(ali] <= 0);

can be rewritten using forall or max operators. We created a benchmark for
each possible rewriting; for instance, in the case of max, by rewriting the loop
into assert(\max(a, 0, N) <= 0). The original benchmarks were used for the
evaluation of the other tools, none of which supported (extended) quantifiers.

In (ii), we crafted 9 programs that make use of aggregation or quantifiers,
and derived further benchmarks by considering different array sizes (10, 100 and
unbounded size); one combination (unbounded array inside a struct) had to be
excluded, as it is not valid C. In order to evaluate other tools on our crafted
benchmarks, we reversed the process described for the SV-COMP benchmarks
and translated the operators into corresponding loop constructs.

Results. In[Table 3 we present the number of verified programs per instrumenta-
tion operator for each tool, as well as further statistics for MONOCERA regarding
verification times and instrumentation search space. The “Inst. space” column
indicates the size of the instrumentation search space (i.e., number of instrumen-
tations producible by applying the non-deterministic instrumentation operator).

18

“Inst. steps” column indicates the number of attempted instrumentations, i.e.,
number of iterations in the while-loop in In our implementation,
the check in line 5 can time out and cause the check to be repeated
at a later time with a greater timeout, which can lead to more iterations than
the size of the search space. In [4], we list results per benchmark for each tool.

For the SV-COMP benchmarks, CPACHECKER managed to verify 1 program,
while SEAHORN and TRICERA could not verify any programs. MONOCERA ver-
ified in total 42 programs from SV-COMP. Regarding the crafted benchmarks,
several tools could verify the examples with array size 10. However, when the
array size was 100 or unbounded, only MONOCERA succeeded.

6 Related Work

It is common practice, in both model checking and deductive verification, to
translate high-level specifications to low-level specifications prior to verification
(e.g., [I4IBIT3I37]). Such translations often make use of ghost variables and ghost
code, although relatively little systematic research has been done on the required
properties of ghost code [22]. The addition of ghost variables to a program for
tracking the value of complex expressions also has similarities with the concept
of term abstraction in Horn solving [3]. To the best of our knowledge, we are
presenting the first general framework for automatic program instrumentation.

A lot of research in software model checking considered the handling of stan-
dard quantifiers V,3 over arrays. In the setting of constrained Horn clauses,
properties with universal quantifiers can sometimes be reduced to quantifier-free
reasoning over non-linear Horn clauses [I3I37]. Our approach follows the same
philosophy of applying an up-front program transformation, but in a more gen-
eral setting. Various direct approaches to infer quantified array invariants have
been proposed as well: e.g., by extending the IC3 algorithm [27], syntax-guided
synthesis [21], learning [24], by solving recurrence equations [29], backward reach-
ability [3], or superposition [25]. To the best of our knowledge, such methods have
not been extended to aggregation.

Deductive verification tools usually have rich support for quantified specifi-
cations, but rely on auxiliary assertions like loop invariants provided by the user,
and on SMT solvers or automated theorem provers for quantifier reasoning. Al-
though several deductive verification tools can parse extended quantifiers, few
offer support for reasoning about them. Our work is closest to the method for
handling comprehension operators in Spec# [35], which relies on code annota-
tions provided by the user, but provides heuristics to automatically verify such
annotations. The code instrumentation presented in this paper has similarity
with the proof rules in Spec#; the main differences are that our method is based
on an upfront program transformation, and that we aim at automatically find-
ing required program invariants, as opposed to only verifying their correctness.
The KeY tool provides proof rules similar to the ones in Spec# for some of the
JML extended quantifiers [2]; those proof rules can be applied manually to verify
human-written invariants. The Frama-C system [I5] can parse ACSL extended

19

quantifiers [7], but, to the best of our knowledge, none of the Frama-C plug-
ins can automatically process such quantifiers. Other systems, e.g., Dafny [34],
require users to manually define aggregation operators as recursive functions.

In the theory of algebraic data-types, several transformation-based approaches
have been proposed to verify properties that involve recursive functions or cata-
morphisms [3IUT7]. Aggregation over arrays resembles the evaluation of recur-
sive functions over data-types; a major difference is that data-types are more
restricted with respect to accessing and updating data than arrays.

Array folds logic (AFL) [16] is a decidable logic in which properties on arrays
beyond standard quantification can be expressed: for instance, counting the num-
ber of elements with some property. Similar properties can be expressed using
automata on data words [4I], or in variants of monadic second-order logic [3§].
Such languages can be seen as alternative formalisms to aggregation or extended
quantifiers; they do not cover, however, all kinds of aggregation we are interested
in. Array sums cannot be expressed in AFL or data automata, for instance.

7 Conclusion

We have presented a framework for automatic and provably correct program
instrumentation, allowing the automatic verification of programs containing cer-
tain expressive language constructs, which are not directly supported by the
existing automatic verification tools. Our experiments with a prototypical im-
plementation, in the tool MONOCERA, show that our method is able to automat-
ically verify a significant number of benchmark programs involving quantification
and aggregation over arrays that are beyond the scope of other tools.

There are still various other benchmarks that MONOCERA (as well as other
tools) cannot verify. We believe that many of those benchmarks are in reach of
our method, because of the generality of our approach. Ghost code is known
to be a powerful specification mechanism; similarly, in our setting, more pow-
erful instrumentation operators can be easily formulated for specific kinds of
programs. In future work, we therefore plan to develop a library of instrumenta-
tion operators for different language constructs (including arithmetic operators),
non-linear arithmetic, other types of structures with regular access patterns such
as binary heaps, and general linked-data structures.

We also plan to refine our method for showing incorrectness of programs
more efficiently, as the approach is currently applicable mainly for verifying
correctness (experiments in [4]). Another line of work is the establishment of
stronger completeness results than the weak completeness result presented here,
for specific programming language fragments.

Acknowledgements. This work has been partially funded by the Swedish Vin-
nova FFI Programme under grant 2021-02519, the Swedish Research Council
(VR) under grant 2018-04727, the Swedish Foundation for Strategic Research
(SSF) under the project WebSec (Ref. RIT17-0011), and the Wallenberg project
UPDATE. We are also grateful for the opportunity to discuss the research at
the Dagstuhl Seminar 22451 on “Principles of Contract Languages.”

20

References

10.

11.

Afzal, M., Chakraborty, S., Chauhan, A., Chimdyalwar, B., Darke, P., Gupta, A.,
Kumar, S.;, M, C.B., Unadkat, D., Venkatesh, R.: Veriabs : Verification by ab-
straction and test generation (competition contribution). In: Biere, A., Parker, D.
(eds.) Tools and Algorithms for the Construction and Analysis of Systems - 26th
International Conference, TACAS 2020, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April
25-30, 2020, Proceedings, Part II. Lecture Notes in Computer Science, vol. 12079,
pp. 383-387. Springer (2020), https://doi.org/10.1007/978-3-030-45237-7_25
Ahrendt, W., Beckert, B., Bubel, R., Hdhnle, R., Schmitt, P.H., Ulbrich, M.
(eds.): Deductive Software Verification - The KeY Book - From Theory to Prac-
tice, Lecture Notes in Computer Science, vol. 10001. Springer (2016), https:
//doi.org/10.1007/978-3-319-49812-6

Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: Lazy ab-
straction with interpolants for arrays. In: Bjgrner, N.S., Voronkov, A. (eds.)
Logic for Programming, Artificial Intelligence, and Reasoning - 18th Interna-
tional Conference, LPAR-18, Mérida, Venezuela, March 11-15, 2012. Proceed-
ings. Lecture Notes in Computer Science, vol. 7180, pp. 46—61. Springer (2012),
https://doi.org/10.1007/978-3-642-28717-6_7

Amilon, J., Esen, Z., Gurov, D., Lidstréom, C., Riimmer, P.: Automatic program in-
strumentation for automatic verification (extended technical report). CoRR (2023),
to appear.

Amilon, J., Esen, Z., Gurov, D., Lidstrom, C., Riimmer, P.: Artifact for the CAV
2023 paper "Automatic Program Instrumentation for Automatic Verification" (Apr
2023), https://doi.org/10.5281/zenodo.7875416

Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech.
rep., Department of Computer Science, The University of Iowa (2017), available
at www.SMT-LIB.org

Baudin, P., Filliatre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:
ANSI/ISO C Specification Language, http://frama-c.com/acsl.html

Beyer, D.: Progress on software verification: SV-COMP 2022. In: Fisman, D., Rosu,
G. (eds.) Tools and Algorithms for the Construction and Analysis of Systems - 28th
International Conference, TACAS 2022, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April
2-7, 2022, Proceedings, Part II. Lecture Notes in Computer Science, vol. 13244,
pp. 375-402. Springer (2022), https://doi.org/10.1007/978-3-030-99527-0_20
Beyer, D.: SV-Benchmarks: Benchmark Set for Software Verification and Testing
(SV-COMP 2022 and Test-Comp 2022) (Jan 2022), https://doi.org/10.5281/
zenodo.5831003

Beyer, D., Dangl, M., Wendler, P.: Boosting k-induction with continuously-refined
invariants. In: Kroening, D., Pasareanu, C.S. (eds.) Computer Aided Verification
- 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-
24, 2015, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9206, pp.
622-640. Springer (2015), https://doi.org/10.1007/978-3-319-21690-4_42
Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided Verification -
23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings. Lecture Notes in Computer Science, vol. 6806, pp. 184—190. Springer
(2011), https://doi.org/10.1007/978-3-642-22110-1_16

21

https://doi.org/10.1007/978-3-030-45237-7_25
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-642-28717-6_7
https://doi.org/10.5281/zenodo.7875416
http://frama-c.com/acsl.html
https://doi.org/10.1007/978-3-030-99527-0_20
https://doi.org/10.5281/zenodo.5831003
https://doi.org/10.5281/zenodo.5831003
https://doi.org/10.1007/978-3-319-21690-4_42
https://doi.org/10.1007/978-3-642-22110-1_16

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Bjgrner, N., Gurfinkel, A., McMillan, K.L., Rybalchenko, A.: Horn clause solvers
for program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N.,
Finkbeiner, B., Schulte, W. (eds.) Fields of Logic and Computation II - Es-
says Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday. Lec-
ture Notes in Computer Science, vol. 9300, pp. 24-51. Springer (2015), https:
//doi.org/10.1007/978-3-319-23534-9_2

Bjorner, N.S.; McMillan, K.L., Rybalchenko, A.: On solving universally quanti-
fied Horn clauses. In: Logozzo, F., Fahndrich, M. (eds.) Static Analysis - 20th
International Symposium, SAS 2013, Seattle, WA, USA, June 20-22, 2013. Pro-
ceedings. Lecture Notes in Computer Science, vol. 7935, pp. 105-125. Springer
(2013), https://doi.org/10.1007/978-3-642-38856-9_8

Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model
Checking. Springer (2018), https://doi.org/10.1007/978-3-319-10575-8
Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski,
B.: Frama-C - A software analysis perspective. In: Eleftherakis, G., Hinchey, M.,
Holcombe, M. (eds.) Software Engineering and Formal Methods - 10th Interna-
tional Conference, SEFM 2012, Thessaloniki, Greece, October 1-5, 2012. Proceed-
ings. Lecture Notes in Computer Science, vol. 7504, pp. 233-247. Springer (2012),
https://doi.org/10.1007/978-3-642-33826-7_16

Daca, P., Henzinger, T.A., Kupriyanov, A.: Array folds logic. In: Chaudhuri, S.,
Farzan, A. (eds.) Computer Aided Verification - 28th International Conference,
CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II. Lecture
Notes in Computer Science, vol. 9780, pp. 230-248. Springer (2016), https://doi.
org/10.1007/978-3-319-41540-6_13

De Angelis, E., Proietti, M., Fioravanti, F., Pettorossi, A.: Verifying catamorphism-
based contracts using constrained Horn clauses. Theory Pract. Log. Program.
22(4), 555-572 (2022), https://doi.org/10.1017/51471068422000175
Donaldson, A.F., Kroening, D., Riimmer, P.: Automatic analysis of scratch-pad
memory code for heterogeneous multicore processors. In: Esparza, J., Majum-
dar, R. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems. LNCS, vol. 6015, pp. 280-295. Springer (2010), https://doi.org/10.1007/
978-3-642-12002-2_24

Ernst, G.: Korn - software verification with Horn clauses (competition contribu-
tion). In: Sankaranarayanan, S., Sharygina, N. (eds.) Tools and Algorithms for the
Construction and Analysis of Systems - 29th International Conference, TACAS
2023, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2022, Paris, France, April 22-27, 2023, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 13994, pp. 559-564. Springer (2023),
https://doi.org/10.1007/978-3-031-30820-8_36

Esen, Z., Riimmer, P.: TriCera: Verifying C programs using the theory of heaps.
In: 2022 Formal Methods in Computer Aided Design, FMCAD 2022, Trento, Italy,
October 17 - October 21, 2022 (2022), (To appear)

Fedyukovich, G., Prabhu, S., Madhukar, K., Gupta, A.: Quantified invariants via
syntax-guided synthesis. In: Dillig, I., Tasiran, S. (eds.) Computer Aided Verifica-
tion - 31st International Conference, CAV 2019, New York City, NY, USA, July
15-18, 2019, Proceedings, Part I. Lecture Notes in Computer Science, vol. 11561,
pp. 259-277. Springer (2019), https://doi.org/10.1007/978-3-030-25540-4_14
Filliatre, J., Gondelman, L., Paskevich, A.: The spirit of ghost code. For-
mal Methods Syst. Des. 48(3), 152-174 (2016), https://doi.org/10.1007/
s10703-016-0243-x

22

https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-642-38856-9_8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-319-41540-6_13
https://doi.org/10.1007/978-3-319-41540-6_13
https://doi.org/10.1017/S1471068422000175
https://doi.org/10.1007/978-3-642-12002-2_24
https://doi.org/10.1007/978-3-642-12002-2_24
https://doi.org/10.1007/978-3-031-30820-8_36
https://doi.org/10.1007/978-3-030-25540-4_14
https://doi.org/10.1007/s10703-016-0243-x
https://doi.org/10.1007/s10703-016-0243-x

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: generating compact ver-
ification conditions. In: Hankin, C., Schmidt, D. (eds.) Proceedings of: Symposium
on Principles of Programming Languages (POPL’01). pp. 193-205. ACM (2001),
https://doi.org/10.1145/360204.360220

Garg, P., Loding, C., Madhusudan, P., Neider, D.: Learning universally quan-
tified invariants of linear data structures. In: Sharygina, N., Veith, H. (eds.)
Computer Aided Verification - 25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13-19, 2013. Proceedings. Lecture Notes in Computer
Science, vol. 8044, pp. 813-829. Springer (2013), https://doi.org/10.1007/
978-3-642-39799-8_57

Georgiou, P., Gleiss, B., Kovéacs, L.: Trace logic for inductive loop reasoning. In:
2020 Formal Methods in Computer Aided Design, FMCAD 2020, Haifa, Israel,
September 21-24, 2020. pp. 255-263. IEEE (2020), https://doi.org/10.34727/
2020/isbn.978-3-85448-042-6_33

Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn Verification
Framework. In: Kroening, D., Pasareanu, C.S. (eds.) Computer Aided Verification
- 27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-
24, 2015, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9206, pp.
343-361. Springer (2015), https://doi.org/10.1007/978-3-319-21690-4_20
Gurfinkel, A., Shoham, S., Vizel, Y.: Quantifiers on demand. In: Lahiri, S.K., Wang,
C. (eds.) Automated Technology for Verification and Analysis - 16th International
Symposium, ATVA 2018, Los Angeles, CA, USA, October 7-10, 2018, Proceed-
ings. Lecture Notes in Computer Science, vol. 11138, pp. 248-266. Springer (2018),
https://doi.org/10.1007/978-3-030-01090-4_15

Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press (2009)

Henzinger, T.A., Hottelier, T., Kovacs, L., Rybalchenko, A.: Aligators for arrays
(tool paper). In: Fermiiller, C.G., Voronkov, A. (eds.) Logic for Programming,
Artificial Intelligence, and Reasoning - 17th International Conference, LPAR-17,
Yogyakarta, Indonesia, October 10-15, 2010. Proceedings. Lecture Notes in Com-
puter Science, vol. 6397, pp. 348-356. Springer (2010), https://doi.org/10.1007/
978-3-642-16242-8_25

Hojjat, H., Riimmer, P.: The ELDARICA Horn solver. In: FMCAD 2018. pp. 1-7
(2018), https://doi.org/10.23919/FMCAD.2018.8603013

K., H.G.V., Shoham, S., Gurfinkel, A.: Solving constrained Horn clauses modulo
algebraic data types and recursive functions. Proc. ACM Program. Lang. 6(POPL),
1-29 (2022), https://doi.org/10.1145/3498722

Kahsai, T., Kersten, R., Riimmer, P., Schéf, M.: Quantified heap invariants for
object-oriented programs. In: Eiter, T., Sands, D. (eds.) LPAR-21, 21st Interna-
tional Conference on Logic for Programming, Artificial Intelligence and Reasoning,
Maun, Botswana, May 7-12, 2017. EPiC Series in Computing, vol. 46, pp. 368—-384.
EasyChair (2017), https://easychair.org/publications/paper/Pmh

Leavens, G.T., Baker, A.L., Ruby, C.: JML: A notation for detailed design. In:
Kilov, H., Rumpe, B., Simmonds, I. (eds.) Behavioral Specifications of Busi-
nesses and Systems, The Kluwer International Series in Engineering and Com-
puter Science, vol. 523, pp. 175-188. Springer (1999), https://doi.org/10.1007/
978-1-4615-5229-1_12

Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) Logic for Programming, Artificial Intelli-
gence, and Reasoning - 16th International Conference, LPAR-16, Dakar, Sene-

23

https://doi.org/10.1145/360204.360220
https://doi.org/10.1007/978-3-642-39799-8_57
https://doi.org/10.1007/978-3-642-39799-8_57
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_33
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_33
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-030-01090-4_15
https://doi.org/10.1007/978-3-642-16242-8_25
https://doi.org/10.1007/978-3-642-16242-8_25
https://doi.org/10.23919/FMCAD.2018.8603013
https://doi.org/10.1145/3498722
https://easychair.org/publications/paper/Pmh
https://doi.org/10.1007/978-1-4615-5229-1_12
https://doi.org/10.1007/978-1-4615-5229-1_12

35.

36.

37.

38.

39.

40.

41.

gal, April 25-May 1, 2010, Revised Selected Papers. Lecture Notes in Com-
puter Science, vol. 6355, pp. 348-370. Springer (2010), https://doi.org/10.1007/
978-3-642-17511-4_20

Leino, K.R.M., Monahan, R.: Reasoning about comprehensions with first-order
SMT solvers. In: Shin, S.Y., Ossowski, S. (eds.) Proceedings of the 2009 ACM
Symposium on Applied Computing (SAC), Honolulu, Hawaii, USA, March 9-12,
2009. pp. 615-622. ACM (2009), https://doi.org/10.1145/1529282.1529411
Matsushita, Y., Tsukada, T., Kobayashi, N.: RustHorn: CHC-based verification
for Rust programs. ACM Trans. Program. Lang. Syst. 43(4), 15:1-15:54 (2021),
https://doi.org/10.1145/3462205

Monniaux, D., Gonnord, L.: Cell morphing: From array programs to array-free
Horn clauses. In: Rival, X. (ed.) Static Analysis - 23rd International Symposium,
SAS 2016, Edinburgh, UK, September 8-10, 2016, Proceedings. Lecture Notes in
Computer Science, vol. 9837, pp. 361-382. Springer (2016), https://doi.org/10.
1007/978-3-662-53413-7_18

Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Log. 5(3), 403-435 (2004), https://doi.org/
10.1145/1013560.1013562

Priya, S., Zhou, X., Su, Y., Vizel, Y., Bao, Y., Gurfinkel, A.: Verifying verified code.
In: Hou, Z., Ganesh, V. (eds.) Automated Technology for Verification and Anal-
ysis - 19th International Symposium, ATVA 2021, Gold Coast, QLD, Australia,
October 18-22, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12971,
pp. 187-202. Springer (2021), https://doi.org/10.1007/978-3-030-88885-5_13
Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
17th IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25 July 2002,
Copenhagen, Denmark, Proceedings. pp. 55-74. IEEE Computer Society (2002),
https://doi.org/10.1109/LICS.2002.1029817

Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In:
Esik, Z. (ed.) Computer Science Logic, 20th International Workshop, CSL 2006,
15th Annual Conference of the EACSL, Szeged, Hungary, September 25-29, 2006,
Proceedings. Lecture Notes in Computer Science, vol. 4207, pp. 41-57. Springer
(2006), https://doi.org/10.1007/11874683_3

24

https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1145/1529282.1529411
https://doi.org/10.1145/3462205
https://doi.org/10.1007/978-3-662-53413-7_18
https://doi.org/10.1007/978-3-662-53413-7_18
https://doi.org/10.1145/1013560.1013562
https://doi.org/10.1145/1013560.1013562
https://doi.org/10.1007/978-3-030-88885-5_13
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/11874683_3

	Automatic Program Instrumentation for Automatic Verification
	Jesper Amilon, Zafer Esen, Dilian Gurov, Christian Lidström, and Philipp Rümmer

