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Abstract. The theory of arrays, supported by virtually all SMT solvers,
is one of the most important theories in program verification. The stan-
dard theory of arrays, which provides read and write operations, has
been extended in various different ways in past research, among others,
by adding extensionality, constant arrays, function mapping (resulting in
combinatorial array logic), counting, and projections. This paper studies
array theories extended with sum constraints, which capture properties
of the sum of all elements of an integer array. The paper shows that
the theory of extensional arrays extended with constant arrays and sum
constraints can be decided in non-deterministic polynomial time. The
decision procedure works both for finite and infinite index sorts, as long
as the cardinality is fixed a priori. In contrast, adding sum constraints
to combinatorial array logic gives rise to an undecidable theory. The pa-
per concludes by studying several fragments in between standard arrays
with sums and combinatorial arrays with sums, aiming at providing a
complete characterization of decidable and undecidable fragments.

1 Introduction

Arrays are fundamental in Computer Science because they provide a structured
way to store and manage multiple values of the same type efficiently. They allow
fast access to elements through indexing, enabling optimization of algorithms in
terms of both time and space complexity. Reasoning about arrays is therefore a
crucial part of verification of programs, and the theory of arrays is one of the
most important theories supported by SMT solvers. The standard theory of ar-
rays, proposed by McCarthy [10], has been extended over the years in various
directions; among others, by adding extensionality, constant arrays and func-
tion mapping (resulting in combinatorial array logic CAL [11]), counting [5], or
projections [3], aiming at a theory in which programs and specifications can be
concisely encoded and efficiently analyzed.

In this paper, we consider array theories extended with sum constraints,
which capture properties of the sum of elements in an integer array. Sum con-
straints are frequently used in specifications and are made available in specifi-
cation languages like JML [7] and ACSL [2] in the form of extended quantifiers,
yet are currently not supported by any SMT solver. In verification tools, sum
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constraints are therefore handled through quantified axioms [8] or intricate en-
codings [1] that are passed to the SMT solver. Exploring the possibility to sup-
port sum constraints directly in an SMT solver, we survey known decidability
results for arrays extended with sums. We provide a simplified proof that Com-
binatorial Array Logic extended with sum constraints is undecidable. We then
propose a new decision procedure for extensional arrays extended with sum con-
straints, that operates for both finite and infinite index sets uniformly, as long
as their cardinality is fixed a priori. We overcome the interaction between the
residual sums and the default values arising from constant arrays uniformly. The
decision procedure is presented in a sequential manner, grouped into a prepara-
tion phase, simple rule applications, and rewriting of the sum constraints. This
structure makes the procedure particularly comprehensible and easy to reason
about.

Contributions of the paper: (1) We formalize our view of sum constraints and
prove that the extension of CAL by sum constraints is undecidable in Section 4.
(2) We survey results from the literature about arrays with sums in Section 5.
(3) Our main contribution is a decision procedure for the satisfiability problem
of quantifier-free formulae of extensional arrays with constant arrays and sums
in Section 6, which runs in non-deterministic polynomial time. (4) We examine
further extensions of our fragment on decidability in Section 7. Overall, this
results in an overview of decidability and undecidability results and the problems
that arise when we add sum constraints, serving both as a reference and starting
point for ongoing research.

2 Related Work

A basic theory of arrays was introduced by McCarthy [10]. The satisfiability
problem of quantifier-free formulae in an (extensional or non-extensional) ar-
ray theory is NP-complete [15]. Our work uses the results and the framework
of Combinatory Array Logic (CAL) [11] as a starting point, which extends ex-
tensional array theory by adding a constant array operator and element-wise
function applications. An extension to CAL is Cartesian Array Logic (CaAL) [3],
which supports n-ary arrays and adds a projection operator that corresponds to
partial function application; adding projections to the theory comes at the cost
of NEXPTIME-complexity of the corresponding satisfiability problem. All these
theories have in common that the operators used in the constraints are designed
to extract single elements of the array or act on an array uniformly. In contrast,
an extension to statements specific to arrays as a whole is provided by the Array
Folds Logic (AFL) [5], which enables counting elements in an array. However,
AFL can not reason about the sum of all elements in an array. The projection
operator in CaAL can only model finite sums (see Example 1). The work of Ro-
drigo Raya [13] is, to the best of our knowledge, the only decision procedure
supporting summation of elements for infinite arrays. However, the results from
the summation process are solely used to reason about cardinality constraints
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on index sets, and can neither be stored in another array nor compared to other
array elements. The details are discussed in Section 5.

3 Preliminaries

We give some preliminaries and recollect the notions of the array theories that
we refer to later. For foundations on logic we refer to [6]. First, we formally define
the notion of a theory.

Definition 1 (Signature). Let ΣS be a set of sorts, ΣF a set of function
symbols and ΣP a set of predicate symbols, where each f ∈ ΣF , respectively
p ∈ ΣP is endowed with a corresponding arity and sorts from ΣS. Then we call
the triple Σ = (ΣS , ΣF , ΣP ) a signature.

Definition 2 (Theory). Let Σ = (ΣS , ΣF , ΣP ) be a signature. A first-order
formula over Σ is called Σ-sentence if it has no free variables. A Σ-theory is a
signature Σ together with a collection of Σ-sentences closed under entailment.

Axioms of particular interest are those that make a statement about the cardi-
nality of our theory.

Definition 3 (cardinality axioms). Let n ∈ N. We define the following ax-
ioms (independent of the underlying signature) for theories with equality:

∃x1, . . . , xn.
∧

(i,j)∈{1,...,n}2,i̸=j

xi ̸= xj (≥ n) (1)

∀x1, . . . , xn.
∨

(i,j)∈{1,...,n}2,i̸=j

xi = xj (< n) (2)

We say a theory

– has cardinality at least n if it includes the axiom (≥ n).
– has cardinality less than n if it includes the axiom (< n).
– has cardinality n if it includes (≥ n) and (< n+ 1).
– is bounded if there exists an n ∈ N such that it includes (< n).
– is unbounded if it includes the axioms (≥ n) for all n ∈ N.
– has fixed cardinality if it is either infinite or there exists an n ∈ N such that

it has cardinality n.

We describe array theories as conservative extensions of some base theory.

Definition 4 (conservative extension). Let Ti be a theory with signature Σi

and axioms Ai for i ∈ {1, 2}. Then T2 is called a conservative extension of T1 if
(1) Σ1 ⊆ Σ2, and (2) formulae ϕ definable in T1 are entailed by A1 iff they are
entailed by A2, i.e., A1 |= ϕ iff A2 |= ϕ.
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We assume a base theory with satisfiability problem of quantifier-free formulae
in NP. For our purposes, arrays are introduced by adding a new sort denoted by
I ⇒ E, for two sorts I and E, where we call I the index sort and E the element
sort. Nested array sorts are allowed. The function symbols, predicate symbols,
and axioms depend on the array theory we want to consider. In any case, they
are conservative extensions of our base theory. The most basic array theory, also
known as McCarthy arrays, can be defined as follows.

Definition 5. Let T be our base theory with signature (ΣS , ΣF , ΣP ) and cor-
responding axioms. Then the associated array theory is the following extension.

– ΣS is extended to ΣS
A, which is the least set such that ΣS ⊆ ΣS

A and for all
I, E ∈ ΣS

A we have (I ⇒ E) ∈ ΣS
A.

– for all sorts I, E ∈ ΣS
A, the set ΣF is extended by an operator read(·, ·) :

((I ⇒ E), I) → E, sometimes also called select, and an operator write(·, ·, ·) :
((I ⇒ E), I, E) → (I ⇒ E), sometimes called store. We abbreviate read(a, i)
by a[i].

The following axioms, representing the semantics of read and write, are added
to extend our base theory to the theory of McCarthy arrays:

∀a : (I ⇒ E), i : I, v : E. write(a, i, v)[i] = v (3)
∀a : (I ⇒ E), i : I, j : I, v : E. i = j ∨ write(a, i, v)[j] = a[j]. (4)

The above extension is indeed conservative. As a next extension, we consider
extensionality of arrays, that is, we can reason about equality of arrays as a
whole. Therefore, we add the following axioms:

∀a : (I ⇒ E), b : (I ⇒ E). ∃i : I. a = b ∨ a[i] ̸= b[i]. (5)

We call the resulting theory the extensional array theory. If the satisfiability
problem of the base theory is in NP, then the satisfiability problem of a formula
in the corresponding extensional array theory is in NP, too [15, Theorem 3]. To
show NP membership, we can abstract away the array symbols and end up with
an equi-satisfiable formula in the base theory.

For the rest of the paper, we assume that the quantifier-free theory of in-
tegers without multiplication, called Linear Integer Arithmetic (LIA) (we omit
the prefix “quantifier-free” in the following), is included in the base theory, and
we assume a “core solver” that decides satisfiability of quantifier-free formulae
in the base theory in non-deterministic polynomial time. Note that LIA can be
reduced in polynomial time to Presburger Arithmetic (PA), that is, the theory
of natural numbers without multiplication, which is NP-complete.

Closely related to summation is the star operator introduced in [12].

Remark 1 (LIA*). For later use, we introduce the notion of a star operator on
sets of integer vectors. Let S ⊆ Zn be a set of integer vectors, then we define

S∗ :=

{
n∑

i=1

xi | n ∈ N and x1, . . . ,xn ∈ S

}
. (6)
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Then LIA* is the theory of Linear Integer Arithmetic extended by constraints of
the form x ∈ {z | F (z)}∗, where x is a vector of integer terms and z a vector
of integer variables, both of size n ∈ N, and F is a LIA formula in which the
variables z can occur. In [12] it is shown that the satisfiability problem of LIA*
formulae is NP-complete.

Another important extension of extensional arrays is Combinatorial Array Logic
(CAL), which adds constant array constructors K(·) : E → (I ⇒ E) and point-
wise function applications mapf : (I ⇒ E)n → (I ⇒ E) as new function
symbols to the signature, where f : En → E is a function in the base theory.
The semantics of the new functions are defined by the following axioms:

∀v : E, i : I. K(v)[i] = v. (7)
∀a1, . . . , an : (I ⇒ E), i : I. mapf (a1, . . . , an)[i] = f(a1[i], . . . , an[i]) (8)

The satisfiability problem of quantifier-free CAL formulae is NP-complete as well.
The decision procedure provided in [11] follows the same idea as those for the
theory of extensional arrays: one carries reads through mapf terms and adds one
additional read for every array, representing all values that are not constrained,
to detect contradictions arising from the constant array operator.

4 Sum Constraints

We formalize what we mean by a sum constraint, which is a constraint on an
array that refers to the sum of all array elements. The difficulty with sums
is that we make a statement about all elements in the array, of which there
may be infinitely many. There are two aspects we need to take into account:
whether the sum exists, and, if it does, what its value is. Finite sums always
exist, while the sum of infinite arrays only exists if almost all array elements have
value zero. To address this undefinedness, we introduce a new relation symbol
sum : ((I ⇒ Z),Z), which intuitively holds for an array a and an integer k if the
sum of the elements of a exists and is equal to k.

The semantics of sum is defined by two axiom schemata. Evidently the axiom
only applies to arrays with Z as element sort. If an array has only finitely many
non-zero elements, the sum exists, which is expressed by the following axiom
schema, where distinct(i1, . . . , in) evaluates to true if and only if i1, . . . , in are
pairwise distinct:

∀i1, . . . in : I, v1, . . . , vn, w : Z. distinct(i1, . . . , in) →(
sum(write(. . . (write(K(0), i1, v1) . . . in, vn), w) ↔ w =

n∑
i=1

vi

)
(9)

We used the fact that an array which is zero almost everywhere arises from a
finite number of write operators from K(0). However, the number of non-zero
elements is not known in general, which results in infinitely many axioms, one
for each n ∈ N.
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As finiteness cannot be expressed in first-order logic, as a consequence of the
compactness Theorem [6, Theorem 4.6], we use an axiom schema in second-order
logic to describe the cases in which a sum is not defined. We write injective(f)
for the formula expressing injectivity of f :

∀a : (I ⇒ Z), v : Z.(
∃f : Z → I.

(
injective(f) ∧ ∀n : Z. a[f(n)] ̸= 0

))
→ ¬sum(a, v)

(10)

Definition 6. Let T be a base theory including LIA, where all sorts have fixed
cardinality. Then we define Summation Array Logic (SAL) as the extensional
array theory extended by the constant array operator and the sum predicate and
their corresponding axioms.

With our description of sums, we obtain the following undecidability re-
sult. The result is related to the one given in [13], which however holds for a
richer array theory including Boolean algebra expressions over index sets (see
Section 5.2).

Theorem 1. Consider CAL extended by sum constraints and Z with Linear In-
teger Arithmetic as index and element sort. Then satisfiability of quantifier-free
formulae in the resulting theory is undecidable.

Proof. We prove this by reduction from Hilbert’s tenth problem [9], which states
that the problem whether diophantine equations have a solution is undecidable.
To this end, it suffices to show that we can express equations of the form z = x ·y
for integer variables x, y, z ∈ Z. The function f : Z → Z, which evaluates to 1 if
its argument is greater or equal to zero, and to zero otherwise, can be defined
in LIA by the formula (x1 < 0 ∧ x2 = 0) ∨ (x1 ≥ 0 ∧ x2 = 1). Furthermore, the
function g : Z2 → Z with g(x1, x2) = x2 if x1 = 1 and g(x1, x2) = 0 otherwise,
can be defined in LIA by the formula (x3 = x2 ∧ x1 = 1) ∨ (x3 = 0 ∧ x1 ̸= 1).
Hence, we can define the following formula in CAL.

b = mapf (a) ∧ sum(b, x) ∧ c = mapg(b,K(y)) ∧ sum(c, z). (11)

The first constraint requires b to have values 0 or 1, since f has those as its image.
Together with the second constraint on the sum of b, b necessarily has x entries
with 1 and the rest with 0 in order to be satisfiable. Finally, the application of g
to b and K(y) sets all non-zero values of b to y and the rest to 0, which enforces
b to have exactly x entries with the value y, i.e. sum(c, z) ⇔ z =

∑x
i=1 y = x · y.

5 Arrays With Sums in the Literature

5.1 Cardinality of the Index Sort

Consider any array theory with finite (bounded) index sorts. If we add sum
constraints, we obviously maintain decidability: we may simply impose reads on
all array indices. Then we can replace the sum operator by the actual formula
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computing the sum, as in axiom 9. This transforms any formula with sum con-
straints to an ordinary formula in the theory without sum constraints. However,
this will lead to a O(|I|) blowup of the formula for the imposed reads, where I
is the index sort.

Lemma 1. Let T be an array theory whose satisfiability problem is decidable
and whose index sorts are bounded. Then the theory extended by sum constraints
is decidable as well.

Another procedure that is built on CAL is the Cartesian Array Logic (CaAL) [3].
It is introduced to represent quantum states as multi-dimensional arrays of the
form {0, 1}n ⇒ C, where C denotes the complex numbers. In this logic, a projec-
tion operator is available, which (as a special case) can model sum constraints,
as shown by the following example.

Example 1. Let projk(a, i) denote the projection operator from CaAL to the
array a : {0, 1}n ⇒ C, which is the projection of the k-th index variable to the
value i, defined as follows using notation for multidimensional arrays:

projk(a, i)[i0, . . . , in−1] = a[i0, . . . , i︸︷︷︸
k-th position

, . . . , in−1]. (12)

Now consider a : {0, 1}n ⇒ C. Then the sum s of a can be calculated by the
following formula, where map+ denotes element-wise addition of arrays:

a0 = a ∧ s = an[ ] ∧
n∧

i=1

ai = map+(proj0(ai−1, 0), proj0(ai−1, 1)) (13)

Although the size of this formula is only linear in n, solving the formula boils
down to constructing a number of read operations that is exponential in n; in
the end, a decision procedure has to construct reads for all locations of the
array a. This is an explanation for why the decision procedure in [3] runs in non-
deterministic exponential time in general. The construction of the sum using the
projection operator is not possible for infinite index sorts in CaAL. Hence, the
proof of Theorem 1 does not carry over to the case of CaAL.

In order to handle arrays with infinite index sort, it is necessary that we have
information about all elements in the array, even if they do not explicitly occur
in a constraint. In the decision procedure for CAL [11], a fresh index variable is
introduced to represent the default value. However, this is only possible because
the index sort has infinite cardinality. Some changes in the decision procedure
for CAL are necessary to support finite index sorts [11].

5.2 Other Sum Constraints

A different definition of a sum constraint is used by Rodrigo Raya in [13]. In [14],
Raya et al. describe a satisfiability preserving translation from CAL to quantifier-
free Boolean algebra formulae with Presburger Arithmetic and interpreted index
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sets (QFBAPAI). A formula in QFBAPAI has the following form [14, Def. 5]

F (S1, . . . , Sk) ∧
k∧

i=1

Si = {r ∈ I | φi(x1[r], . . . , xn[r], c1, . . . , cm)}, (14)

where F is a Boolean algebra formula with Linear Integer Arithmetic constraints
on the cardinality of the set variables S1, . . . , Sk, φi are formulae in the existential
fragment of the element theory, I is the index sort of the arrays, x1, . . . , xn are
array variables and c1, . . . , cm are variables of the element sort. Without going
into further detail, the idea behind the transformation is to abstract away the
constraints in the element theory to constraints on index sets, for example a read
constraint v = read(a, i) can be equivalently described by {i} ⊆ {l | a[l] = v}
as part of the formula F . In [13], sum constraints are added to this logic which
results in formulae of the following form

F (S1, . . . , Sk,σ) ∧
k∧

i=1

Si = {n ∈ I | φi(c[n])} ∧ σ =
∑

Lc[n] | φ0(c[n])M, (15)

where c is a tuple of arrays and L·M denotes multi-sets. First note that this does
not allow variables in the element sort, which would result in undecidability
similar to Theorem 1 and is stated in [13, Corollary 6]. The summation process
has the same intended semantics as ours in Section 4.

Example 2. A minimal example of a sum in QFBAPAI with sums is the following
formula

|S| < σ ∧ S = {n ∈ I | φ(c[n])} ∧ σ =
∑

Lc[n] | φ0(c[n])M. (16)

The formula φ specifies the set of indices included in S, depending on the value
of the array c at the index. Formula φ could for example select those indices
where the value at this index is even: φ(x) ≡ ∃y. 2 · y = x. Formula φ0 restricts
the values of the array that add to the sum. To obtain the sum over the whole
array we simply choose φ0 ≡ true. Then the original formula translates to “the
number of indices where an even value is stored is smaller than the sum over
all values of the array”. This is satisfiable for the array K(0). No matter how
we choose φ and φ0, the resulting formula will always make a statement on the
cardinality of an index set in relation to the (partial) sum of an array.

In comparison, formulas in our theory of arrays with sums can take the form
sum(a, v) ∧ v = read(b, i). The sum is used to constrain elements of the b. In
particular, we can store the sum of one array in another array.

6 Array Theory With Constant Arrays and Sums

In this section, we provide a decision procedure which runs in non-deterministic
polynomial time for the array theory with sums defined in definition 6. Note
that we allow finite and infinite index sorts as long as they have fixed cardinality.
Nested arrays are also allowed.
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Remark 2 (flattened form). We assume that our formulae are in flattened form,
meaning that the left-hand side of every equality is a variable. For readability,
however, we will initially write literals in non-flattened form and immediately
transform them afterwards. Any formula can be converted into flattened form in
linear time by adding at most two fresh variables per atom, splitting the atom
into three atoms, for instance x+1 = y−2 can be transformed to a = x+1∧b =
y − 2 ∧ a = b with fresh variables a, b.

We end up with the following set of constraints we want to reason about.

Definition 7 (Arrcs). Let Arrcs be the set of all sets which consist of constraints
of the following form.

v = read(a, i) (read )
a = write(b, i, v) (write)
a = b, a ̸= b ((in)equality of arrays)
x = y, x ̸= y ((in)equality of variables)
a = K(v) (const)
sum(a, v) (sum predicate)
p(v1, . . . , vn) (base theory predicate)

where p is a predicate in the base theory, not involving array variables. We say
that an element φ ∈ Arrcs is satisfiable if and only if

∧
c∈φ c is satisfiable.

For the time being, we do not allow constraints of the form ¬sum(a, v) in the
input formula. There are two possibilities: the sum does not exist, or the sum does
not have the desired value. The latter case can be expressed by sum(a,w)∧v ̸= w.

The decision procedure to determine satisfiability of an element φ ∈ Arrcs is
presented as a sequence φ = F−3, F−2, F−1, F0, . . . , Fn in Arrcs such that F−3 is
satisfiable if and only if Fn is. The steps to derive Fi+1 from Fi are described in
the following. We start by an example to illustrate the procedure.

Example 3. Consider the following satisfiable set of constraints, where i, j, x, v, w :
Z and a, b : Z ⇒ Z in Arrcs:

φ =

{
a = write(b, i, v), b = write(c, j, w), c = K(x),
sum(a,w), sum(b, 12)

}
(17)

First, we non-deterministically guess an arrangement, defining which variables
have equal and which have distinct values. One possible guess could be to assume
that all occurring index variables are pairwise distinct, i.e. distinct(i, j), and
a = b ̸= c holds. It will turn out that this is indeed an arrangement that yields
satisfiability of the formula. In order to treat the sum constraints later, we impose
reads on all occurring index and array variables, plus one additional read on a
fresh index ia on a, representing the “residual” of the sum, i.e., the sum of
array elements at indices distinct from i and j. If we abbreviate rkd := (vd,k =
read(d, k)), φ is equi-satisfiable to

φ ∪ {rkd | k ∈ {i, j, ia}, d ∈ {a, b, c}} ∪ {distinct(i, j, ia), a = b, b ̸= c} (18)
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since adding additional variables and reads does not change satisfiability. Next,
we can infer additional constraints that we add to our set of constraints by a
set of inference rules derived from the axioms of our theory. The inference rule
derived from the axiom for the constant array operator implies vc,i = vc,j =
vc,ia = x. The inference rules derived from the axioms on read and write infer
vb,i = vb,ia = x, vb,j = w, va,ia = x, va,j = w, va,i = v, which can be illustrated
as follows.

a = · · · i : v · · · j : w · · · ia : x x

b = · · · i : x · · · j : w · · · ia : x x
(19)

Since a and b have an infinite index sort, in order to satisfy sum(a,w), respec-
tively sum(b, v), a and b need to be zero almost everywhere. Since they arise
from K(x) they have the value x almost everywhere, in particular we can de-
duce x = 0. Note that this implies that the array has value zero everywhere
except at i and j, and that the residual sum is zero. Finally, we can rewrite the
sum constraints to v + w + x = w and x + w + x = 12, since we assume that
the residual of the sums is “compressed” at ia. We can solve these equations
algebraically and obtain x = v = 0, w = 12. A model of the arrays as functions
Z → Z can be constructed by setting c to 0 everywhere, and setting a = b to the
function that returns 12 for input 0 and zero elsewhere.

The first steps from F−3 to F0 summarize the introduction of all necessary
fresh variables and reads. In the above example, the (simplified) set F0 is (18).

Definition 8 (Indices for extensionality). Let φ ∈ Arrcs. For each pair of
array variables of the same sort a, b : I ⇒ E, let ka,b be a fresh index variable,
vaa,b, v

b
a,b fresh element variables, and define F−2 := F−3 ∪ {vaa,b = read(a, ka,b) |

a, b : I ⇒ E occur in F−3} as the formula with indices for extensionality.

The variable ka,b serves as an index variable to verify the extensionality
axiom in the case of inequality, which may eventually be identified with an
already existing variable.

Definition 9 (Arrangement). Let K be a set of variables of the same sort.
An arrangement of K is a partition of K into equivalence classes, that is sets
K1, . . . ,Kn ⊆ K such that

⋃̇
Ki = K. Let {K1, . . . ,Kn} be an arrangement of

K, then we define

arr({K1, . . . ,Kn}) =
n⋃

i=1

⋃
a,b∈Ki

{a = b} ∪
n⋃

i=1

i−1⋃
j=1

⋃
a∈Ki,b∈Kj

{a ̸= b}. (20)

Definition 10 (Chosen arrangements). Let F−2 be a formula with indices
for extensionality. For all variables of each sort σ in F2 including array sorts
non-deterministically choose an arrangement Kσ. Let δa : E be a fresh variable
for each array a : I ⇒ E in F−2 which we will call the default value. Then
choose an arrangement Kσ,δ for all default values of each sort σ in F2 as well.
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For each sort σ in F2, either include ⊥ into one equivalence class of Kσ,δ or
add a new equivalence to Kσ,δ which consists only of ⊥. We define F−1 :=
F−2 ∪

⋃
σ arr(Kσ) ∪ arr(Kσ,δ) as the formula with chosen arrangements.

The default values serve as auxiliary variables that indicate the value of an
array at an index that is not explicitly mentioned in the formula through a read.
For instance, the elements of a constant array K(x) necessarily need to be x,
hence the default value should be x. The equivalence class with ⊥ indicates that
the arrays within this class (which may also be none) do not necessarily have a
default value. This allows us to choose the values at indices that are not explicitly
mentioned in the formula as illustrated by the following example.

Example 4. Consider the following satisfiable set of constraints, where i : Z and
a, b : Z ⇒ Z in Arrcs

φ = {a = write(b, i, v), read(b, i) = 8, sum(a, 10), sum(b, 12)}. (21)

We first choose an arrangement; as we will see, in this example, the arrange-
ment a ̸= b gives rise to a solution. In contrast to Example 3, there is no con-
stant array involved. Hence, we may choose δa = δb = ⊥ as arrangement for
default values. For comparison: in Example 3, the only satisfying arrangement
for default values is δa = δb = δc ̸= ⊥. Clearly a and b need to be zero almost
everywhere to satisfy the sum constraints. However, this does not imply that
their respective default values need to be zero, which would cause all elements
except at i to be zero. Here the role of ⊥ comes into play: we are free to choose
infinitely many elements as zero but there might exist finitely many non-zero el-
ements at indices other than i. We assume that those, adding up to the residual
sum of the arrays, are compressed at a fresh index ia. Since a and b are equal at
all indices other than i the residual sums coincide as well, which is ensured by
inference rules instantiating the read and write axioms. Hence, it suffices to add
the constraints read(a, i) = v, read(a, ia) = s, read(b, ia) = s, i ̸= ia to φ, which
can be illustrated as follows.

a = 0 i : v 0 ia : s 0

b = 0 i : 8 0 ia : s 0
(22)

Note that the element at index i is not included in the residual sum of a and
therefore explicitly added to the formula since otherwise the respective residual
sums of a and b do not coincide. The sum constraints can then be rewritten
as v + s = 10 and 8 + s = 12 which can be solved algebraically and yields
the solution s = 4, v = 6. Clearly, many other solutions exist, for instance by
constructing arrays that store at four distinct indices the element 1; but to find
just one solution, we can assume that the only non-zero entries are at i and ia.

Lemma 2. Let φ ∈ Arrcs. Then φ is satisfiable if and only if there exist ar-
rangements Kσ1

, . . . ,Kσn
for all occurring variables and sorts σ1, . . . , σn in φ

such that φ ∪
⋃n

i=1 arr(Kσi
) is satisfiable.
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Remark 3. Intuitively, the default value of an array should be preserved through
write operators, for instance a = store(K(x), i, v) should have the value x ev-
erywhere except at i, i.e. δa = x = δK(x). However, this is only true for infinite
index sorts. Consider arrays a, b : {0} ⇒ Z and the following formula:

a = K(0) ∧ b = write(a, 0, 1) ∧ c = K(1) ∧ b = c (23)

Any array that is constant should have a corresponding default value. Then
a = K(0) and b = c = K(1) would imply δa = 0 and δb = δc = 1. If we allow to
propagate default values through write operators we obtain 0 = δa = δb = δc = 1,
which is a contradiction. However, the formula is satisfiable with a = K(0) and
b = c = K(1) which is due to the fact that all elements of the index sort are
already explicitly mentioned in the formula. Therefore, we need to compare the
number of constrained indices with the cardinality of the index sort.

Definition 11 (Index equivalence classes). Let a : (I ⇒ E) be an array
variable occurring in a formula φ ∈ Arrcs. We write [i] for the equivalence class of
variable i according to an arrangement. Then ct(a) is the least set of equivalence
classes (according to an arrangement) of index variables that satisfies:

– for all constraints v = read(a, i), we have [i] ∈ ct(a);
– for all constraints a = write(b, i, v), we have ct(b) ⊆ ct(a) and [i] ∈ ct(a);
– for all constraints a = b we have ct(b) = ct(a).

Definition 12 (Weak equivalence [4]). Let φ ∈ Arrcs. Two array variables
a, b are called weakly equivalent if there exists a sequence of array variables a =
a1, . . . , an = b such that for all i ∈ {1, . . . , n−1} either ai = write(ai+1, j, v) ∈ φ,
ai+1 = write(ai, j, v) ∈ φ for some j, v or ai = ai+1 ∈ φ. We define WE (a) :=
{b | b is weakly equivalent to a}.

Definition 13 (Indices for residual sums). Let F−1 be a formula with cho-
sen arrangements. Let S′ be the set of all array variables a : I ⇒ Z with
sum(a, v) ∈ F−1 for some v and |ct(a)| < |I|. Let S ⊆ S′ be a subset that
contains exactly one array variable for each weak equivalence class in S′. For
a ∈ S define ct(WE (a)) :=

⋃
c∈WE(a) ct(c). Then we define the formula with all

necessary reads and indices for residual sums as

F0 := F−1 ∪
⋃
a∈S

 {v = read(b, i) | b ∈ WE (a), [i] ∈ ct(WE (a))}
∪ {εa = read(a, ia) | |ct(WE (a))| < |I|}
∪ {i ̸= ia | [i] ∈ ct(WE (a)), |ct(WE (a))| < |I|}

 (24)

Note that only one εa for each weak equivalence class suffices to represent the
residual of the sum on the indices which are not constrained in the formula.

Deriving F0 from F−3, only a polynomial number of constraints and fresh
variables have been added. The next steps can be described by a set of inference
rules, similar to those in the decision procedure for CAL in [11]. The rules are
depicted in Figure 1. They can be read top-down, i.e., the premise is the set of
constraints above the line and the consequence is the set of constraints below the
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a=write(b, i, v)

a[i]=v
idx

a=write(b, i, v) w=a′[j] a′=a i ̸=j

w=b[j]
⇓

a=K(v) w=a′[j] a′=a

a[j]=v
K⇓

a=write(b, i, v) w=b′[j] b′=b i ̸=j

w=a[j]
⇑

a : (I → E) b : (I → E) a ̸=b

a[ka,b] ̸=b[ka,b]
ext

a=K(v)

δa=v
δa-const

b=write(a, i, v) δa ̸=δb

⊥ δa-write
a=b δa ̸=δb

⊥ δa-equality

x=y f(x) ̸=f(y)

⊥
cong

Fig. 1. Inference rules

line. Premises a′ = a between array variables express that a rule is applicable if
a′, a coincide, or if those arrays are assumed to be equal in the arrangement. If
ϕ ⊆ Fi and we have an inference rule with ϕ as the premise, then the consequence
ψ can be added to Fi, i.e., Fi+1 = Fi ∪ ψ. The inference rules idx,⇓,⇑, ext,K ⇓
are adjusted versions of those in [11] for CAL and model the axioms. Rules δa-
const , δa-write and δa-equality are introduced to handle the default values. We
restrict the usage of δa-write and δa-equality to the case where |ct(b)| < |I|, as
discussed in Remark 3. Rule cong ensures functional consistency for any function
symbol f . We assume that the core solver returns unsatisfiable if ⊥ occurs.

Lemma 3. The inference rules δa-const , δa-write and δa-equality are sound in
the following sense: if a formula φ ∈ Arrcs is satisfiable then there exists an
arrangement of the default values such that whenever Fi is satisfiable, then the
set Fi+1 obtained by applying one of the rules is satisfiable as well.

Proof. Rule δa-const is sound since there are no axioms referring to the default
values that could be violated after the rule application and it is already ensured
by the axiom for the constant array constructor that if a = K(v) and a =
K(w) then v = w, hence δa = v is well-defined. Assume for a contradiction
that for all arrangements of the default values, there is an application of δa-
write, respectively δa-equality , possible. The only way to obtain such a situation
according to our rules is that both arrays a, b arise from a constant array along a
sequence of write and equality constraints, otherwise we would be able to change
the default values to make a rule application impossible. Therefore there exists
k ∈ I \

⋃
ct(b) ̸= ∅ such that read(a, k) = δa ̸= δb = read(b, k), which is a

contradiction to the axiom for read and write, respectively extensionality.

We apply the inference rules until we reach a fixed point Fk for some k ∈ N. In
order to handle the sum constraints, we use a set of rewrite rules.

sum(a, v)⇝∞
∑

[i]∈ct(a)

read(a, i) = v ∧ δa = 0 (25)
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sum(a, v)⇝n

∑
[i]∈ct(a)

read(a, i) = v (26)

sum(a, v)⇝δa
n

∑
[i]∈ct(a)

read(a, i) + (|I| − |ct(a)|) · δa = v (27)

A rewrite rule ϕ ⇝ ψ applied to Fi results in Fi+1 = (Fi \ ϕ) ∪ ψ. The first
rewrite rule is restricted to |I| = ∞, the second one to |I| <∞ and δa = ⊥ and
the third one is restricted to |I| <∞ and δa ̸= ⊥.

Lemma 4. Let Fi ∈ Arrcs be the current set of constraints such that the appli-
cation of inference rules has reached a fixed point. Then the rewrite rules on sum
constraints preserve satisfiability of Fi.

Proof. For i1, . . . , in+m such that distinct(i1, . . . , in+m) holds, we have

sum(write(. . . (write(K(0), i1, v1) . . . in+m, vn+m),

n+m∑
i=1

vi)

⇔ sum(write(. . . (write(K(0), i1, v1) . . . in+1,

n+m∑
i=n+1

vi),

n+m∑
i=1

vi).

(28)

Therefore, if a sum constraint satisfies the axioms, then there exists a repre-
sentation of the sum as rewritten that satisfies the formula. The residual of the
sum is compressed at the fresh indices that may have been introduced previously
before applying the inference rules. The soundness of ⇝δa

n follows from the fact
that additional reads evaluate to the default value as in the proof of Lemma 3.

Theorem 2. The following procedure is sound and complete for determining
satisfiability of quantifier-free formulae in Arrcs, i.e. there exists an arrangement
such that the procedure returns satisfiable iff the original formula is satisfiable.

1. Step by step add the additional variables, reads and arrangements to subse-
quently obtain the sequence F−3, F−2, F−1, F0, as defined in Definitions 8,
10 and 13.

2. Apply the inference rules until a fixed point Fk is reached.
3. Apply the rewrite rules to all sum constraints to obtain Fk+n.
4. Let a core solver decide satisfiability of Fk+n.

Proof. Soundness: Adding additional variables and reads does not change satisfi-
ability. Adding arrangements is sound by Lemma 2. The inference rules are sound
since they are direct instantiations of the axioms and by Lemma 3. The rewrite
rules on sums are sound by Lemma 4. The last step is sound by assumption on
our core solver.

Completeness: It suffices to show that any satisfiable model of the core solver
in the last step gives rise to a model that satisfies the original formula.
Let M be a model provided by the core solver. We extend M to a model Mλ

for our original formula as in [11]. Array variables are interpreted as functions.
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The read, write and constant array operator have their expected interpretations,
see [11] for details. We choose for every sort E a default value δE ∈Mλ(E) and
δZ = 0. Then we define the interpretation of an array variable a : I ⇒ E as

Mλ(a)(ι) =

Mλ(v) if v = read(a, i) exists and Mλ(i) = ι
Mλ(δa) else if δa ̸= ⊥
δE else if δa = ⊥

(29)

This interpretation is well-defined: Assume we have v = read(a, i)∧w = read(a, j)
with i = j. Then by the inference rule for congruence for the function symbol
read , we obtain M(v) = M(read(a, i)) = M(read(a, j))) = M(w), in particular
Mλ(a)(Mλ(i)) is well-defined. We show that all axioms are satisfied.

– Write-axioms and Extensionality-axiom: We only show that the write ax-
ioms hold, the extensionality axiom works analogously. Assume we have
a = write(b, i, v). Then Mλ(a)(Mλ(i)) = Mλ(v) is fulfilled by the inference
rule idx. For all ι ∈ Mλ(

⋃
ct(b)) \ {Mλ(i)}, we have Mλ(a)(ι) = Mλ(b)(ι)

by definition of the interpretation of arrays on Mλ(
⋃
ct(b)) and the infer-

ence rules ⇓ and ⇑. For all ι ∈ Mλ(I) \Mλ(
⋃
ct(a)) we have Mλ(a)(ι) =

Mλ(δa) =Mλ(δb) =Mλ(b)(ι), since the rule δa − write is not applicable.
– Constant array axiom: Assume we have a = K(v). Then we have Mλ(a)(ι) =
Mλ(v) for all ι ∈ Mλ(I), either because of K ⇓ for ι ∈ Mλ(

⋃
ct(a)) or

because of δa-const .
– sum-axioms: The choice δZ = 0 immediately shows that the axioms on infi-

nite sums trivially hold. Then the rewrite rules are direct instantiations of
the sum axioms for finite sums, according to our interpretation of arrays.

Theorem 3. The above decision procedure runs in non-deterministic polyno-
mial time.

7 Overview of Decidability Results

We have shown that CAL with sums is undecidable, but that by removing the
element-wise function applications, e.g., the mapf operators, we can retain de-
cidability. We consider the following extensions of Arrcs to examine the frontier
of decidability:

– Adding another specific aggregation function. As an example we examine
the minimum, respectively maximum of an array, i.e., min(a) = x.

– Pointwise function applications of functions with arity one, e.g. b = mapf (a).

Lemma 5. Minimum min(a) and maximum max(a) of an array can be defined
in CAL.

Proof. We consider the maximum operator. As an auxiliary function, the mini-
mum z = min(x, y) of two integers x, y is defined by the following LIA formula:

z = min(x, y) ⇔ (z = x ∧ x ≤ y) ∨ (z = y ∧ y ≤ x ∧ x ̸= y). (30)

Then max(a) = x if and only if a = mapmin(·,·)(a,K(x)) ∧ ∃i. read(a, i) = x.
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Theorem 4. The satisfiability problem of formulas in Arrcs, extended by con-
straints of the form max(a) = c and min(a) = c, for constants c ∈ Z, is decid-
able.

Proof. Since minimum and maximum operator are subsumed by CAL, we can
propagate reads through the corresponding map operators as in the decision
procedure in [11]. If an array is not weakly equivalent to both an array involved
in a sum constraint and an array in a minimum, respectively maximum operator
the respective decision procedures from Section 6 and [11] apply. Therefore,
without loss of generality let a be an array variable with infinite index sort,
occurring in constraints max(a) = c and sum(a, v), where c ∈ Z is an integer
constant. Then sum(a, v) can be rewritten as(

v −
∑

[i]∈ct(a)

read(a, i)
)
∈ {x | x ≤ c}∗. (31)

Since c is an integer constant, the above is a LIA* formula and can be decided
in non-deterministic polynomial time.

Remark 4. If we allow minimum/maximum constraints comparing an array with
a variable, like in max(a) = x, the resulting formula of the rewrite process in the
proof of Theorem 4 is not a LIA* formula, since the characteristic function of the
set for the star operator contains additional variables. It is still open whether
the satisfiability problem of this extension is decidable or not.

We adapt the definition of weak equivalence in the presence of mapf by also
allowing ai = mapf (ai+1) in Definition 12. Furthermore, if a = mapf (b) occurs,
then ct(a) also satisfies ct(b) = ct(a).

Theorem 5. The satisfiability problem of formulas in Arrcs, extended by point-
wise function applications of functions of arity one, i.e., constraints of the form
a = mapf (b) where f is a LIA function of arity one, restricted to at most one
sum constraint per weak equivalence class of array variables, is decidable.

Proof. Let a be an array variable occuring in a sum constraint sum(a, v) in the
formula. Due to Lemma 1 we can assume that a has infinite index sort. We make a
case distinction depending on whether a is weakly equivalent to a constant array.
(1) If a is weakly equivalent to a constant array, then δa ̸= ⊥. Hence, we have
δa = 0 in order to satisfy the sum constraint. In this case, the sum constraint
can be rewritten as in (25) and the decision procedure for CAL applies. (2) If a
is not weakly equivalent to a constant array, we can freely choose all remaining
values. For each function application mapf in the formula we can compute the
range of f , which is a semilinear set. Since mapf (mapg(b)) = mapf◦g(b) we can
assume that all map operators are of the form a = mapfi(ai) for i ∈ {1, . . . , n}.
Let Fi be the respective formula that describes the image of fi as a semilinear
set, then define F := ∧n

i=1Fi. Then a sum constraint sum(a, v) can be rewritten
as (

v −
∑

[i]∈ct(a)

read(a, i)
)
∈ {x | F (x)}∗. (32)
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The above constraint asks whether the values that are not explicitly mentioned
in the formula can form a sum that coincides with the difference between v and
the sum of all explicitly mentioned values of a, which is decidable as a LIA∗

formula.

Remark 5. The minimum and maximum operator without variables can be mod-
eled by functions of arity one: max(a) = c⇔ a = mapmin(·,c)(a)∧read(a, i) = x.
For variables to be meaningfully included in an element-wise function applica-
tion to an array, a function of arity greater than one is needed. For instance,
a = mapmin(a,K(x)) states max(a) ≤ x, whereas a = mapmin(·,c)(a) states
max(a) ≤ c and c can not be a variable since otherwise min(·, c) is not a LIA
function. Note that the undecidability proof in Theorem 1 only needs function
applications of arity two.

8 Conclusion and Future Work

We provided a sound and complete decision procedure for an extensional array
theory with constant arrays and sum constraints. The implementation of the
procedure is ongoing work. We furthermore discussed the difficulties of defining
sums over arrays and the borders of decidability that arise. Our decision pro-
cedure proves that decidability can be preserved for adding sums, however gets
lost if we add pointwise function applications as in CAL. We examined additional
decidability results for further extensions of our fragment.

Sum constraints can be seen as one of the most used and desired operators
of the form (I ⇒ E) → E. A direct generalization of our decision procedure
would be to consider the element sort of the array to be an arbitrary Abelian
semigroup (E, ∗). Furthermore, one could look for other interesting operators for
array theories to add to the decision procedure, such as minimum and maximum
in the general case (discussed in Section 7). The question whether adding specific
function applications, such as minimum and maximum operators with variables,
preserves decidability remains open if we allow variables. A further goal is to
explore the space between the theories CAL and CaAL to find array theories that
can succinctly model quantum circuits (which is the main purpose of CaAL),
have lower complexity than NEXPTIME, but also include summation to reason
about probabilities.
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