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1 Introduction

Many termination provers for imperative programs compose termination ar-
guments by repeatedly invoking ranking function synthesis tools (instances
are [7, 10, 14, 24]). Such synthesis tools are available for programs formulated
with the help of various logical theories, including linear and non-linear arith-
metic, arrays, or heap. Thus, complex termination arguments can be con-
structed that reason simultaneously about the heap as well as linear and non-
linear arithmetic.

Efficient synthesis of ranking functions for machine-level bit-vectors, how-
ever, has remained an open problem. Today, the most common approach to
create ranking functions over machine integers is to use tools actually designed
for rational arithmetic. Because such tools do not faithfully model all prop-
erties of machine integers, it can happen that invalid ranking functions are
generated (both for terminating and for non-terminating programs), or that
existing ranking functions are not found. Both phenomena can lead to incom-
pleteness of termination provers: verification of actually terminating programs
might fail, even if they are in a fragment that could be handled in a sound
and complete fashion, such as finite-state programs over bit-vectors.

This article considers the termination problem as well as the synthesis
of ranking functions for programs written in languages like ANSI-C, C++,
or Java. Such languages typically provide bit-vector arithmetic over 16, 32
or 64 bit words, and usually support both unsigned and signed datatypes
(represented using the 2’s complement). We present two new algorithms to
generate ranking functions for bit-vectors:

(i) a method based on the reduction of bit-vectors to Presburger arithmetic,
in combination with a novel and complete synthesis algorithm of linear
ranking functions for transition relations defined in Presburger arithmetic;
and

(ii) a template-matching approach for predefined classes of ranking functions,
here instantiated for linear ranking functions. We make use of efficient
QBF- and SAT-techniques in order to synthesise ranking functions from
templates.

We quantify the performance of these new algorithms using examples
drawn from Windows device drivers. Our algorithms are compared to the
linear ranking function synthesis engine Rankfinder [24], which uses rational
arithmetic. We also compare the performance of our methods with an approach
to termination checking that is not based on ranking functions, the rewriting
of termination properties to safety properties according to Biere et al. [6]. Our
experimental results indicate that, on practical examples, the new methods
presented in this article clearly surpass known methods in terms of precision
and performance.

Contribution We introduce two new methods for ranking function synthesis
for bit-vector programs: an extension of the approach in [24] to transition re-
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lations defined in Presburger arithmetic, and a template-matching method in-
stantiated for linear ranking functions. Both methods are shown to be sound
and complete for the computation of linear ranking functions of bit-vector
relations. We give an extensive theoretical and empirical evaluation of our
methods. Through an experimental comparison to pre-existing techniques, we
demonstrate the practicality of our methods and identify reasons for imprac-
ticality of previous approaches.

Organisation of the Article In Sect. 2, we define syntax and semantics of the
programs we consider, briefly explain the architecture of termination provers,
and provide motivating examples. In Sect. 3, a known approach for ranking
function synthesis based on linear programming is discussed. Subsequently, a
new extension to this method is presented that handles bit-vector programs
soundly. Sect. 4 describes how linear ranking functions for bit-vector programs
can be defined in terms of affine geometry, which gives rise to a new approach
based on template-matching for predefined classes of ranking functions, de-
scribed in Sect. 5. In Sect. 6, the results of an experimental evaluation of
all new methods are given and compared to results obtained through known
approaches.

2 Bit-Vector Programs and Termination Analysis

2.1 Syntax and Semantics of Bit-Vector Programs

In order to simplify presentation, we abstract from the concrete language and
datatypes and introduce a simpler category of bit-vector programs. Real-world
programs can naturally be reduced to our language, which is in practice done
by (a preprocessing stage of) the termination prover (or model checker).

We assume that bit-vector programs consist of only a single loop (endlessly
repeating its body), possibly preceded by a sequence of statements (the stem);
this is not a restriction, as will become clear in the next section. Apart from
this, our program syntax permits guards (assume (t)), sequential composition
(β; γ), choice (β 2 γ), and assignments (x := t). Programs operate on global
variables x ∈ X , each of which ranges over a set Bα(x) of (unsigned) bit-vectors
of width α(x) > 0. The syntactic categories of programs, statements, and
expressions are defined by the following grammar:

〈Prog〉 ::= 〈Stmt〉 repeat { 〈Stmt〉 }

〈Stmt〉 ::= skip || assume (〈Expr〉) || 〈Stmt〉; 〈Stmt〉 || 〈Stmt〉 2 〈Stmt〉 || x := 〈Expr〉

〈Expr〉 ::= 0n || 1n || · · · || ∗n || x || castn(〈Expr〉) || ¬〈Expr〉 || 〈Expr〉 ◦ 〈Expr〉

Because the width of variables is fixed and does not change during program
execution, it is not necessary to introduce syntax for variable declarations.
Expressions 0n, 1n, . . . are bit-vector literals of width n, the expression ∗n
non-deterministically returns an arbitrary bit-vector of width n, and the op-
erator castn changes the width of a bit-vector (cutting off the highest-valued
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unsigned long ulByteCount;

for (int nLoop = ulByteCount;

nLoop; nLoop -= 4) { [...] }

Fig. 1 Code fragment of Windows driver audio/gfxswap.xp/filter.cpp (#14 in our evalua-
tion)

bits, or filling up with zeros as highest-valued bits). The semantics of bitwise
negation ¬, and of the binary operators ◦ ∈ {+,×,÷,=, <s, <u, & , | ,�,�}
is as usual. When evaluating the arithmetic operators +,×,÷,�,�, both
operands are interpreted as unsigned integers. In the case of the strict order-
ing relation <s (resp., <u) the operands are interpreted as signed integers in
2’s complement format (resp., as unsigned integers). The <s operator could in
principle be expressed by means of reduction to the unsigned operator <u, but
keeping <s allows us to simplify presentation of later sections. Adding further
operations, e.g., signed division or bit-vector concatenation, is straightforward.

Example 1 We consider the program given in Figure 1. The program con-
tains an unsigned 32-bit variable ulByteCount, as well as a signed 32-bit
variable nLoop. Recasting the program in unsigned arithmetic, with the help
of a fresh (unsigned) variable x with α(x) = 32, and −4 ≡ 232 − 4 mod 232,
the bit-vector program for a single loop iteration is

assume (¬(x = 032)); x := x+ (232 − 4)32 . (1)

Typing Rules for Bit-Vector Programs In the whole article, we assume that
considered bit-vector expressions and programs are well-typed, in particular
that operands in expressions have correct bit-width. This requirement will also
be important for the complexity theorem given in Sect. 2.2, where assumptions
about the bit-widths of all expressions in a program have to be made. We write
t : n to denote that the expression t is correctly typed and denotes a bit-vector
of length n. Given a statement or program β, we write β : ⊥ to express that β
is correctly typed. In the following rules, x ∈ X ranges over variables, n ∈ N+

over positive natural numbers, s, t over expressions, β, γ over statements:

k ∈ N+

kn : n ∗n : n
t : n
¬t : n

s : n t : n
s ◦ t : n

◦ ∈ {+,×,÷, & , | }

α(x) = n
x : n

s : n t : k
s ◦ t : n

◦ ∈ {�,�}
α(x) = n t : n

x := t : ⊥
t : k

castn(t) : n
s : n t : n
s ◦ t : 1

◦ ∈ {=,≤} t : 1
assume (t) : ⊥

skip : ⊥
β : ⊥ γ : ⊥
β; γ : ⊥

β : ⊥ γ : ⊥
β 2 γ : ⊥

β : ⊥ γ : ⊥
β repeat { γ } : ⊥
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Formal Semantics of Bit-Vector Programs The state space of programs de-
fined over a (finite) set X of bit-vector variables with widths α is denoted by
S, and consists of all mappings from X to bit-vectors of the correct width:
S = {f ∈ X → B+ | f(x) ∈ Bα(x) for all x ∈ X}. The set of possible values of
a well-typed expression t : n, evaluated in state s ∈ S, is denoted by vals(t)
and defined recursively by equations like the following:

vals(∗n) = Bn

vals(x) = {s(x)} ⊂ Bn

vals(0n) = {〈0, 0, . . . , 0, 0〉} ⊂ Bn

vals(1n) = {〈0, 0, . . . , 0, 1〉} ⊂ Bn

...

vals(t1 ◦ t2) = {a1 ◦ a2 | a1 ∈ vals(t1), a2 ∈ vals(t2)} ⊆ Bn

In the last equation, it is assumed that a concrete definition of every binary
operation ◦ on bit-vectors a1, a2 ∈ Bn is available.

The transition relation induced by a well-typed statement β is denoted by
Rβ ⊆ S × S, and is again defined recursively:

Rskip(s, s′) ≡ s = s′

Rassume (t)(s, s
′) ≡ s = s′ ∧ vals(t) = {1}

Rβ 2 γ(s, s′) ≡ Rβ(s, s′) ∨Rγ(s, s′)

Rβ;γ(s, s′) ≡ ∃s′′ ∈ S. Rβ(s, s′′) ∧Rγ(s′′, s′)

Rx:=t(s, s
′) ≡ s′(x) ∈ vals(t) ∧ (∀y ∈ X \ {x}. s(y) = s′(y))

Rβ repeat { γ }(s, s
′) ≡ ∃s′′ ∈ S. Rβ(s, s′′) ∧R∗γ(s′′, s′)

In the definitions, and everywhere in the article, R∗ denotes the reflexive tran-
sitive closure of a binary relation R, and ≡ states logical equivalence of two
formulae.

2.2 The Termination Problem and its Complexity

Bit-vector programs do not provide any heap or recursion and therefore belong
to the class of constant memory programs, which means that the memory
consumption is defined upfront and does not depend on program inputs. We
say that a given bit-vector program β repeat { γ } terminates if the transition
relation Rβ repeat { γ } is well-founded, in other words, if there is no infinite
sequence of states s0, s1, s2, . . . ∈ S with Rβ repeat { γ }(si, si+1) for all i ≥ 0.

Example 2 We assume α(n) = 8. Of the following bit-vector programs, (2)
terminates, while the other two programs are non-terminating:

assume (n = 08); repeat { assume (n <u 2508); n := n+ 18 } (2)

assume (n = 08); repeat { assume (n <u 2558); n := n+ 28 } (3)

skip; repeat { assume (n <u 108) } (4)
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Termination of bit-vector programs is decidable, more precisely, the termi-
nation problem is PSPACE-complete: polynomial memory is needed in the size
of the program. For this complexity result, it is necessary to bound the size
of bit-vector expressions and variables occurring in a program (also see [22]).
Given any positive integer B, we assume that PB is the class of bit-vector
programs in which the bit-width of all variables and expressions is at most B
(as derived by the typing rules in the previous section).

Lemma 1 For every B ≥ 1, deciding termination of bit-vector programs in
PB is PSPACE-complete.

Proof We first show PSPACE hardness and then membership in PSPACE.

Termination is PSPACE-hard We show that the termination problem for bit-
vector programs is PSPACE-hard by a polynomial reduction of the satisfiabil-
ity problem of QBF-formulae (which is the canonical PSPACE-complete prob-
lem [30]). Suppose φ = Q1x1. · · ·Qnxn. ψ is a closed QBF-formula in prenex
form, where Qi ∈ {∀,∃} and ψ is quantifier-free. We will write a program of
polynomial size and memory consumption (in the size of φ) that terminates
if and only if φ is satisfiable. To this end, we assume that x1, . . . , xn are also
declared as program variables of bit-width 1, i.e., α(xi) = 1 for i ∈ {1, . . . , n}.
Furthermore, we assume that ψ is an expression of bit-width 1 in the grammar
defined in Sect. 2.1, which is no restriction because the language provides the
Boolean operators & , | ,¬.

We need further variables to check satisfiability of φ: variables r1, . . . , rn+1

with α(ri) = 1, where each ri will be used to store the truth value of the
sub-formula Qixi. · · ·Qnxn. ψ; variables state1, . . . , staten with α(statei) = 2,1

for the current assignment of each quantified variable; and finally, variables
level0, . . . , leveln+1 with α(level i) = 1, to store which of the quantifiers is
currently being processed.

The satisfiability checker has the following form (for sake of brevity, we
omit the bit-widths of literals like 01):

level0 := 0; level1 := 1; level2 := 0; · · · ; leveln+1 := 0;

state1 := 0; · · · ; staten := 0;

repeat { assume (level0 & ¬r1)

2 loop1 2 loop2 2 · · · 2 loopn

2
(
assume (leveln+1); rn+1 := ψ; leveln+1 := 0; leveln := 1

)
}

Note that the program will not terminate if it ever enters a state such that
level0 & ¬r1, since the first assume statement does not have any side-effect. In
this situation, level0 records that the whole formula has been processed, and

1 Alternatively, pairs (statei, state
′
i) of variables with width α(statei) = α(state′i) = 1

can be used.
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¬r1 that the formula evaluated to 0. Each of the blocks loopi is responsible
for enumerating the possible values of xi and evaluating the quantifier Qi:

assume (level i); level i := 0;(
(assume (statei = 0); statei := 1; level i+1 := 1; xi := 0)

2 (assume (statei = 1); statei := 2; level i+1 := 1; ri := ri+1; xi := 1)

2 (assume (statei = 2); statei := 0; level i−1 := 1; ri := ri ◦ ri+1)
)

where ◦ = & for Qi = ∀, and ◦ = | for Qi = ∃.
We can observe that the size of each loopi is constant (independent of n).

The size of all loopi blocks together is therefore in O(n), and the size of the
whole satisfiability checker is in O(s), where s is the size of the formula φ.

Finally, it can be observed that the transformation of QBF-formulae into
prenex form, as well as the generation of the satisfiability checker can be
achieved in polynomial time.

Termination is in PSPACE To prove that the termination problem for bit-
vector programs is in PSPACE, we encode the termination problem for a
program α into a QBF-formula of polynomial size in the size of α. Because
the satisfiability of QBF-formulae is in PSPACE [30], this shows that pro-
gram termination is in PSPACE as well. The construction is based on the
classical proof that QBF is PSPACE-complete [30] and uses a technique called
“squaring abbreviation.”

We first assume that the transition relations Rβ , Rγ of a bit-vector pro-
gram β repeat { γ } are encoded as quantifier-free Boolean formulae φβ(x, x′)
and φγ(x, x′) (note that the encoding can be chosen such that the size of
φβ(x, x′) and φγ(x, x′) is polynomial in the size of β, γ, and B). We then
recursively define a predicate reach(a, b, n) with the intended semantics “the
statement γ can reach the state b from state a in at most 2n steps.” A naive
recursive definition of reach(a, b, n) is:

reach(a, b, 0) ≡ a = b ∨ φγ(a, b)

reach(a, b, n) ≡ ∃c.reach(a, c, n− 1) ∧ reach(c, b, n− 1)

Expanding reach(a, b, n) in this way will obviously lead to a formula that is
exponential in size, but that only contains existential quantifiers.

Alternatively, we can choose the definition:

reach(a, b, 0) ≡ a = b ∨ φγ(a, b)

reach(a, b, n) ≡ ∃c.∀a′, b′.
(
a′ = a ∧ b′ = c ∨ a′ = c ∧ b′ = b
→ reach(a′, b′, n− 1)

)
Because there is no right-hand side with more than one occurrence of reach,
this leads to a QBF-formula of a size that is polynomial in n and the size of γ
defining reach(a, b, n).

The predicate reach can now be used to encode termination as a QBF-
formula: due to the finiteness of the state space, it is sufficient to construct
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a formula that states the absence of lassos in the transition graph. Assuming
that the state space has 2n elements (i.e., n is the sum of the bit-widths of the
variables declared in the program), this formula is:

¬∃a, b, c, d. (φβ(a, b) ∧ reach(b, c, n) ∧ φγ(c, d) ∧ reach(d, c, n))

Altogether, the size of the formula is polynomial in n, the size of β, γ, and B,
and the formula can obviously be generated from β, γ in polynomial time.

Note that this encoding is equivalent to expressing the termination prop-
erty as a safety property (e.g., according to [6]), and subsequent application
of the QBF-based Bounded Model Checking technique introduced in [20]. ut

Practically, the most successful termination provers are based on incom-
plete methods that try to avoid this high complexity, by such means as the
generation of specific kinds of ranking functions (like functions that are linear
in program variables). The general strategy of such provers is described in the
next section.

2.3 Ranking Functions and the Terminator Algorithm

Definition 1 (Ranking function) Suppose (D,≺) is a well-founded, strictly
partially ordered set, and R ⊆ U × U is a relation over a non-empty set U .
A ranking function for R is a function m : U → D such that:

for all a, b ∈ U : R(a, b) implies m(b) ≺ m(a).

Of particular interest in the context of this article is the well-founded domain
of natural numbers (N, <). In general, we can directly conclude:

Lemma 2 If there exists a ranking function m for the transition relation Rβ
of a program β, then β terminates.

Proof Suppose β does not terminate, which means that there is an infinite
sequence of states s0, s1, s2, . . . ∈ S such that Rβ(si, si+1) for all i ≥ 0. By
Def. 1, this implies that m(si+1) ≺ m(si) for all i ≥ 0, contradicting the as-
sumption that (D,≺) is a well-founded domain. ut

Program termination can therefore be shown with the help of ranking func-
tions. By the disjunctive well-foundedness theorem [25], this is simplified to the
problem of finding a ranking function for every cycle through a program β.
The ranking functions m1,m2, . . . ,mn found for n cyclic paths are used to
construct a global, disjunctive ranking relation

M(a, b) =

n∨
i=1

mi(b) ≺ mi(a) . (5)

Although M is in general not a well-founded relation, it can be shown that
the existence of M nevertheless implies the termination of β [25].
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unsigned char i;

while (i!=0)

i = i & (i-1);

Fig. 2 Code fragment of Windows driver kernel/agplib/init.c (#40 in our evaluation)

One technique that puts this theorem to use is the Terminator Algo-
rithm [12, 13]. In this approach, termination of a program is first expressed
as a safety property [6], initially assuming that no control state of the pro-
gram is visited repeatedly. Consequently, a software model checker is applied
to obtain a counterexample, i.e., an example of a recurring control state. This
counterexample consists of a stem β leading to a cycle γ in the control flow
graph of the program. What follows is an analysis solely concerned with the
program β repeat { γ } consisting of the stem and the cycle, which is why we
may safely restrict ourselves to single-loop programs here. For further details,
consult [6].

The next step in the procedure is to synthesise a ranking function for γ,
which can be seen as a straight-line program, i.e., a program without loops or
choices. If a ranking function mγ can be found for the transition relation Rγ ,
the original safety property is weakened to only search for recurring control
states with the property that mγ(s′) 6≺ mγ(s) for the full program states s, s′,
and the process starts over. This means that, incrementally, a disjunctive rank-
ing relation (5) is constructed. If no further cycles are found, termination of
the program is proven.

2.4 Arithmetic Intricacies in Termination Analysis

We discuss three examples extracted from Windows device drivers that illus-
trate the difficulty of termination checking for low-level code, in this case in
ANSI-C. These examples will be revisited in later sections to illustrate our
methods.

The first example (Figure 2) contains a while loop that iterates as long as
bits are set in the variable i (this method to clear bits in an integer number
goes back to [31]). To find a ranking function for this example, it is necessary
to take the semantics of the bit-wise AND operator & into account, which
is not easy to achieve in arithmetic-based ranking function synthesis tools
(see Sect. 3.1). A possible ranking function is the linear function m(i) = i,
because the result of i & (i-1) is always in the range [0, i− 1]: the value of
m(i) decreases with every iteration, but it cannot decrease indefinitely as it
is bounded from below (i > 0).

The second program (Figure 1) is non-terminating, because the variable
nLoop might be initialised with a value that is not a multiple of four, so
that the loop condition is never falsified. For a correct analysis, it is neces-
sary to know that integer underflows do not change the remainder modulo
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unsigned char Index;

unsigned int Head , i;

assume(Index != ((Head - 1) & 31));

i = Head;

while (i!=Index)

i = (i+1) & 31;

Fig. 3 Code fragment of the driver audio/ac97/wavepcistream2.cpp (#5 in our evaluation)

four. Ignoring overflows, but given the information that the variable nLoop

is in the range [−231, 231 − 1] and is decremented in every iteration, a rank-
ing function synthesis tool might incorrectly produce the ranking function
m(nLoop, ulByteCount) = nLoop.

Figure 3 contains another example of potentially non-terminating bit-vector
code. This code does not terminate when Index > 31, because some of the
upper bits of Index are set, but can never be set in i.

3 Synthesis of Ranking Functions by Linear Programming

3.1 Preliminaries

The ranking function synthesis method underlying termination provers like
Terminator [13] or ARMC [26] was developed by Podelski and Rybalchenko [24].
In their setting, ranking functions are generated for transition relations of the
form R ⊆ Qn ×Qn which are described by a system of linear inequalities, i.e.,

R(x, x′) ≡ Ax+A′x′ ≤ b (A,A′ ∈ Qk×n, b ∈ Qk) ,

where x, x′ ∈ Qn range over vectors of rationals. Bit-vector relations have to
be encoded into such systems, which usually involves an over-approximation
of program behaviour. The derived ranking functions are linear and have
the codomain D = {z ∈ Q | z ≥ 0}, which is ordered by y ≺ z ≡ y + δ ≤ z for
some fixed rational δ > 0. Ranking functions m : Qn → D are represented as
m(x) = rx+ c, with r ∈ Qn a row vector and c ∈ Q. Such a function m is a
ranking function with the domain (D,≺) if and only if

∀x, x′ ∈ Qn . R(x, x′) implies rx+ c ≥ 0 ∧ rx′ + c ≥ 0 ∧ rx′ + δ ≤ rx . (6)

Coefficients r and c for which this implication is satisfied can be constructed
with the help of conditions provided by Farkas’ lemma, of which the ‘affine’
form given in [29] is appropriate:

Lemma 3 (Farkas’ lemma) Suppose A ∈ Qn×k is a matrix, b ∈ Qn a vector
such that the system Ax ≤ b of inequalities is satisfiable, c ∈ Qk is a (row)
vector, and δ ∈ Q is a rational. Then

{x ∈ Qk : Ax ≤ b} ⊆ {x ∈ Qk : cx ≤ δ} (7)
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if and only if there is a non-negative (row) vector γ ∈ Qn such that γA = c
and γb ≤ δ.

Using this lemma, a necessary and sufficient criterion for the existence of
linear ranking functions can be formulated as follows. (For details regarding the
connection between the coefficients in the ranking functions and Farkas’ lemma
we refer the reader to the proof by Podelski and Rybalchenko [24, Theorem 2],
as well as to the proof of Lem. 5 below.)

Theorem 1 (Existence of linear ranking functions [24]) Suppose that
A,A′ ∈ Qn×k are matrices, b ∈ Qn is a vector, and R(x, x′) ≡ Ax+A′x′ ≤ b
is a non-empty transition relation. The relation R has a linear ranking func-
tion m(x) = rx+ c iff there are non-negative (row) vectors λ1, λ2 ∈ Qn such
that:

λ1A
′ = 0, (λ1 − λ2)A = 0, λ2(A+A′) = 0, λ2b < 0.

In this case, m can be chosen as λ2A
′x+ (λ1 − λ2)b.

This criterion for the existence of linear ranking functions is necessary and
sufficient for linear inequalities on the rationals, but only sufficient over the
integers or bit-vectors. There exist relations R(x, x′) ≡ Ax+A′x′ ≤ b, with
x, x′ ∈ Zk ranging over integers, for which linear ranking functions exist, but
the criterion in Theorem 1 fails. An example for this situation is:

R(x, x′) ≡ 0 ≤ x ≤ 4 ∧ 9 ≤ 10x′ − 2x ≤ 11 .

Restricting x and x′ to the integers, this is equivalent to x = 0 ∧ x′ = 1 and can
be ranked by m(x) = −x+ 1. Over the rationals, the program defined by the
inequalities does not terminate, which implies that no ranking function exists
and the criterion of Theorem 1 fails. A non-terminating sequence x0, x1, x2, . . .
of program states is, for instance, defined by the recurrence equations x0 = 0
and xi+1 = xi + 0.2i. Since R(1.25, 1.25), an even simpler counterexample to
termination is the sequence 0.0, 1.1, 1.25, 1.25, 1.25, . . .

3.2 Bit-Vector Ranking Functions through Integer Linear Programming

To extend the approach from Sect. 3.1 and fully support bit-vector programs,
we first generalise Theorem 1 to disjunctions of systems of inequalities over the
integers. We then define an algorithm to synthesise linear ranking functions
for programs defined in Presburger arithmetic, which subsumes bit-vector pro-
grams.

3.2.1 Linear Ranking Functions over the Integers

The previous section considered transition relations expressed as conjunctions
of inequalities, which can only describe convex relations (i.e., R(x, x′) and
R(y, y′) together imply R(λx+ (1− λ)y, λx′ + (1− λ)y′) for every λ ∈ [0, 1]).
Convexity is often violated by bit-vector operations, for instance by operations
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that exhibit overflow/wrap-around behaviour. For instance, over the domain
{0, 1, 2, 3} (calculating modulo 22) we have 12 + 12 = 22 and 32 + 32 = 22, but
22 + 22 = 02. Non-convex operations can naturally be encoded with the help
of disjunctive constraints, which means that we have to consider transition
relations of the form

R(x, x′) ≡
l∨
i=1

Aix+A′ix
′ ≤ bi , (8)

where l ∈ N, Ai, A
′
i ∈ Zn×k, bi ∈ Zn, and x, x′ ∈ Zk range over integer vectors.

Linear ranking functions for such relations can be constructed by solving an
implication like (6) for each disjunct of the relation, as shown below.

Both Podelski and Rybalchenko’s method [24] and the method described
in this section rely on Farkas’ lemma. In the world of integers and bit-vectors,
however, only one of the implications stated in the lemma holds: if x in (7)
ranges over the integers, implied inequalities can in general not be represented
as non-negative linear combinations. Farkas’ lemma still works, however, in
the special case of integral systems of inequalities. A system Ax ≤ b is called
integral if the polyhedron {x ∈ Qk | Ax ≤ b} coincides with its integral hull
(the convex hull of the integer points contained in it).2 For our purposes, we
therefore need the following, slightly modified version of Farkas’ lemma:

Lemma 4 (Integral version of Farkas’ lemma) Suppose A ∈ Qn×k is a
matrix, b ∈ Qn a vector such that the system Ax ≤ b of inequalities is satisfi-
able and integral, c ∈ Qk is a (row) vector, and δ ∈ Q is a rational. Then

{x ∈ Zk : Ax ≤ b} ⊆ {x ∈ Zk : cx ≤ δ} (9)

if and only if there is a non-negative (row) vector γ ∈ Qn such that γA = c
and γb ≤ δ.

The difference between Lem. 4 and the rational Farkas’ lemma (Lem. 3) is the
assumption that Ax ≤ b is integral, and the use of Z instead of Q in (9).

Proof We show that (7) if and only if (9) in the case of an integral system
Ax ≤ b. The conjecture then follows by Lem. 3.

(7) ⇒ (9): holds because of Z ⊂ Q.

(9) ⇒ (7): suppose (9) holds. This implies that the convex hull of the set
{x ∈ Zk : Ax ≤ b} is contained in the half-space {x ∈ Qk : cx ≤ δ}. The convex
hull of {x ∈ Zk : Ax ≤ b} is the same as the integral hull of {x ∈ Qk : Ax ≤ b},
which coincides with {x ∈ Qk : Ax ≤ b} because Ax ≤ b is integral. This im-
plies (7). ut

2 This deviates from the terminology in [29], where integrality is attributed to polyhedra,
and not to systems of inequalities. We choose to speak of integral systems of inequalities for
sake of brevity.
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Every system of inequalities can be transformed into an integral system
with the same integer solutions, although this might increase the size of the sys-
tem exponentially [29]. One approach to transform an arbitrary system Ax ≤ b
of inequalities into an integral system with the same integer solutions is as fol-
lows: first, we derive an equivalent total dual integral system A′x ≤ b′ from
Ax ≤ b such that A′ ∈ Zn′×k. A system A′x ≤ b′ is total dual integral if the
duality equation

max {cx : A′x ≤ b′} = min {yb : y ≥ 0, yA′ = c}

has an integral optimum solution y for each integral vector c for which the min-
imum is finite [29]. A′x ≤ b′ can then be strengthened to A′x ≤ bb′c without
losing integer solutions. The resulting system A′x ≤ bb′c can again be trans-
formed to a total dual integral system, and strengthened, etc. By iterating
this refinement loop, in at most exponentially many steps an integral system
of inequalities is derived (this follows from Theorem 17.4 in [29]).

We are now in the position to give a criterion for the existence of ranking
functions for disjunctive linear systems over integers:

Lemma 5 Suppose l ∈ N, and suppose that for each i ∈ {1, . . . , l} a pair of
matrices Ai, A

′
i ∈ Qni×k and a vector bi ∈ Qni are given such that the system

Aix+A′ix
′ ≤ bi is satisfiable and integral. The disjunctive transition relation

R(x, x′) ≡
l∨
i=1

Aix+A′ix
′ ≤ bi

has a linear ranking function m(x) = rx+ c if and only if there are non-
negative (row) vectors λi1, λ

i
2 ∈ Qn for i ∈ {1, . . . , l} such that

λi1A
′
i = 0, λi2(Ai +A′i) = 0, λi2bi < 0, (λi1 − λi2)Ai = 0, λi2A

′
i = r .

(10)

Proof ⇒: Assume the relation R(x, x′) has a ranking function m(x) = rx+ c.
Arguing as in the proof [24, Theorem 2], this means that for some δ > 0 and
all i ∈ {1, . . . , l} we have:

for all x, x′ ∈ Zk : Aix+A′ix
′ ≤ bi implies

rx+ c ≥ 0 ∧ rx′ + c ≥ 0 ∧ rx′ + δ ≤ rx (11)

By Lem. 4, this implies that there are non-negative vectors λi1, λ
i
2 ∈ Qn such

that for i ∈ {1, . . . , l}:

λi1Ai = −r, λi1A
′
i = 0, λi1bi ≤ c,

λi2Ai = −r, λi2A
′
i = r, λi2bi ≤ −δ

It is now easy to see that (10) is implied by these equations and inequalities.
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⇐: Assume (10) holds for non-negative vectors λi1, λ
i
2 ∈ Qn for i ∈ {1, . . . , l}.

By Theorem 1, for each i ∈ {1, . . . , l} the disjunct Aix+A′ix
′ ≤ bi has a lin-

ear ranking function of the form mi(x) = rix+ ci. Due to the last equation in
(10), we have ri = r for all i ∈ {1, . . . , l}, which implies that

m(x) = rx+ min{ci : i ∈ {1, . . . , l}}

is a ranking function for R(x, x′). ut

3.2.2 Ranking Functions for Presburger Arithmetic

Presburger arithmetic (PA) is the first-order theory of integer arithmetic with-
out multiplication [27]. We describe a complete procedure to generate linear
ranking functions for PA-defined transition relations by reduction to Lem. 5.
Assuming that a polynomial method is used to solve (10), and that a transi-
tion relation is defined by a quantifier-free Presburger formula, the complexity
of our procedure is singly exponential.

Suppose a transition relation R(x, x′) is defined by a Presburger formula.
Because PA admits quantifier elimination [27], it can be assumed that R(x, x′)
is a quantifier-free Boolean combination of equations, inequalities, and di-
visibility constraints ε | (cx+ dx′ + e). Divisibility constraints are introduced
during quantifier elimination and state that the value of the term cx+ dx′ + e
(with c, d ∈ Zn, e ∈ Z) is a multiple of the positive natural number ε ∈ N+.

In order to apply Lem. 5, we eliminate divisibility constraints from R(x, x′)
as explained in detail below. This is possible by introducing auxiliary program
variables y, y′: we will transform R(x, x′) to a formula R′(x, y, x′, y′) without
divisibility constraints, such that ∃y, y′.R′(x, y, x′, y′) ≡ R(x, x′). The trans-
formation increases the size of the PA formula only polynomially.

By rewriting to disjunctive normal form, replacing equations s = t with
inequalities s ≤ t ∧ t ≤ s, the relation R′(x, y, x′, y′) can be stated as in (8):

R′(x, y, x′, y′) ≡
l∨
i=1

Ai

(
x

y

)
+A′i

(
x′

y′

)
≤ bi

We can then apply Lem. 5 to R′ to derive a linear ranking function m′(x, y). To
ensure that no auxiliary variables y occur in m′(x, y) (i.e., m′(x, y) = m(x)),
equations can be added to (10) that constrain the corresponding entries of the
vector r to zero.
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Replacing Divisibility Constraints by Disjunctions of Equations The transfor-
mation from R(x, x′) to R′(x, y, x′, y′) uses the following equivalences:

ε | (cx+ dx′ + e)

≡ ε
∣∣∣ (cx− ε⌊cx

ε

⌋
+ dx′ − ε

⌊dx′
ε

⌋
+ e
)

(12)

≡
∨
i∈Z

0≤i·ε−e<2ε

i · ε− e = cx− ε
⌊cx
ε

⌋
+ dx′ − ε

⌊dx′
ε

⌋
(13)

≡ ∃yc, y′d.
(

0 ≤ cx− εyc < ε ∧ 0 ≤ dx′ − εy′d < ε
∧ (
∨

0≤i·ε−e<2ε i · ε− e = cx− εyc + dx′ − εy′d)

)
(14)

Equivalence (12) holds because divisibility is not affected by subtracting mul-
tiples of ε on the right-hand side, while (13) expresses that the value of the
term cx− εb cxε c+ dx′ − εbdx

′

ε c lies in the right-open interval [0, 2ε). Therefore,
the divisibility constraints of (12) are equivalent to a disjunction of exactly
two equations. Finally, the integer division expressions b cxε c can equivalently
be expressed using existential quantifiers in (14).

To avoid the introduction of quantifiers, the quantified variables yc, y
′
d can

be treated as program variables. Whenever a constraint ε | (cx+ dx′ + e) oc-
curs in R(x, x′), we introduce new pre-state variables yc, yd and post-state
variables y′c, y

′
d that are defined by adding conjuncts to R(x, x′):

R′(x, yc, yd, x
′, y′c, y

′
d) ≡ R(x, x′)∧ 0 ≤ cx− εyc < ε ∧ 0 ≤ dx− εyd < ε

∧ 0 ≤ cx′ − εy′c < ε ∧ 0 ≤ dx′ − εy′d < ε

In R′(x, yc, yd, x
′, y′c, y

′
d), the constraint ε | (cx+ dx′ + e) can then be replaced

with a disjunction
∨

0≤i·ε−e<2ε i · ε− e = cx− εyc + dx′ − εy′d as in (14); this is
possible regardless of whether ε | (cx+ dx′ + e) occurs in a positive or negative
position (i.e., underneath negations). Iterating this procedure eventually leads
to a transition relation R′(x, y, x′, y′) without divisibility constraints, such that
∃y, y′.R′(x, y, x′, y′) ≡ R(x, x′).

Lemma 6 The procedure described above decides the existence of linear rank-
ing functions for transition relations R(x, x′) defined in quantifier-free PA in
deterministic (singly) exponential time.

Proof When eliminating equations and divisibility constraints in R by means
of auxiliary variables, we first derive a transition relation R′(x, y, x′, y′) that
is at most polynomially bigger than R(x, x′). Rewriting to disjunctive nor-
mal form yields at most exponentially many disjuncts, each of which has size
polynomial in the size of R(x, x′):

R′(x, y, x′, y′) ≡
l∨
i=1

Ai

(
x

y

)
+A′i

(
x′

y′

)
≤ bi

∃y, y′.R′(x, y, x′, y′) ≡ R(x, x′) (15)
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For each of the disjuncts Ai
(
x
y

)
+A′i

(
x′

y′

)
≤ bi, satisfiability can be decided

in exponential time, in order to remove unsatisfiable disjuncts. Furthermore,
each of the disjuncts Ai

(
x
y

)
+A′i

(
x′

y′

)
≤ bi can be transformed to an integral

system (of at most exponential size) in exponential time (this follows from
Theorem 17.4 in [29]).

Because of (15), every linear ranking function of R(x, x′) is also a ranking
function of R′(x, y, x′, y′). This means that we can apply Lem. 5 to derive
a ranking function m(x, y) = rx + r′y + c of the relation R′(x, y, x′, y′). By
imposing the additional constraint r′ = 0 (along with (10)), it can be ensured
that the ranking function m(x, y) = rx+ c = m(x) only depends on x and not
on y.

The system (10) of equations and inequalities has size exponential in the
size of R(x, x′), and can be solved (over the rationals) in time singly exponen-
tial in the size of R(x, x′). ut

3.2.3 Representation of Bit-vector Operations in Presburger Arithmetic

PA is expressive enough to capture the semantics of all bit-vector operations
defined in Sect. 2, an observation that is frequently exploited in verification
algorithms [8, 18, 23]. Thus, ranking functions for bit-vector programs can be
generated using Lem. 6. For this, the domain Bn of bit-vectors of length n is
identified with the subset {0, . . . , 2n − 1} of integers, and bit-vector expressions
can recursively be translated into equivalent Presburger formulae.

Suppose that r is a integer variable ranging over {0, . . . , 2n − 1} (and there-
fore, equivalently, over the domain Bn), and e is a bit-vector expression accord-
ing to the grammar in Sect. 2.1. We define a binary function t in such a way
that t(r, e) is a PA formula that is equivalent to the bit-vector equation r = e,
in particular:

t(r, kn) = ∃λ.
(
r = k + λ2n ∧ 0 ≤ r < 2n

)
t(r, e+ e′) = ∃re, re′ .

(
t(re, e) ∧ t(re′ , e′) ∧ 0 ≤ r < 2n ∧
(r = re + re′ ∨ r = re + re′ − 2n)

)
t(r,¬e) = ∃re.

(
t(re, e) ∧ r = 2n − re

)
The quantifiers used in the translation can subsequently be eliminated

using standard procedures [27], resulting in a formula in quantifier-free PA.
The translation of non-linear operations like × and & can be done in a similar
manner by case analysis over the values of their operands. Such an encoding is
possible because the variables of bit-vector programs range over finite domains
of fixed size, albeit at the cost of a generally exponential blow-up in formula
size. Nevertheless, we observed that the translation is well-behaved in many
practical cases, e.g., when at least one operand of a non-linear operation ranges
over a small interval of values (also see Sect. 6).

For the full details of the translation, we refer the interested reader to
the (both human- and machine-readable) axioms used in our implementation
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Seneschal,3 which closely correspond to the cases of the definition of t(r, e)
shown here.

Example 3 We illustrate how the bit-vector program (1) from Example 1 (cor-
responding to Figure 1) can be translated to PA:

x 6= 0 ∧
(
232 | (x′ − x− 232 + 4)

)
∧ 0 ≤ x < 232 ∧ 0 ≤ x′ < 232

From the side conditions, we read off that the term x′ − x− 232 + 4 has the
range [5− 233, 3], so that the divisibility constraint can directly be split into
two equations (auxiliary variables as in (14) are unnecessary in this particular
example). With further simplifications, we can express the transition relation
as:(

x′ = x− 4 ∧ 0 ≤ x′ ∧ x < 232
)
∨
(
x′ = x+ 232 − 4 ∧ 0 < x ∧ x′ < 232

)
It is now easy to see that each disjunct is satisfiable and integral, which means
that Lem. 5 is applicable. Because the conditions (10) are not simultaneously
satisfiable for all disjuncts, no linear ranking function exists for the program.

The implementation Seneschal used in our experiments is able to carry
out the translation from bit-vector expressions to (quantifier-free) PA fully
automatically.

4 The Vector Space of Linear Ranking Functions

This section describes how linear ranking functions for bit-vector programs
can be defined in terms of affine geometry. The characterization enables the
derivation of bounds on the magnitude of coefficients in ranking functions,
which we will exploit in a new, template-based ranking function synthesis
method in Sect. 5.

4.1 Preliminaries

In the following, we consider an arbitrary transition relation R(s, s′) over a
vocabulary X of variables. For sake of simplicity, it is assumed that the bit-
width of all |X | = m variables is n, i.e., α(x) = n for all x ∈ X . Given an
arbitrary but fixed enumeration x1, . . . , xm of the variables X , the states s ∈ S
can be seen as the elements of the grid {0, 1, . . . , 2n − 1}m, embedded in the
vector space Qm, as illustrated in Figure 4(a).

Given this view on program states, it is clear that the candidates for lin-
ear ranking functions (for the transition relation R) are the elements of the
set V = Qm → Q of rational linear functions over the program variables X .
Indeed, every function f ∈ V induces a strict partial order ≺f on the state

3 http://www.philipp.ruemmer.org/seneschal.shtml
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x1

x2
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4

0

(a) State space S for variables x1, x2 with bit-
width n = 2, embedded into Q2.

E

b1

b2

f

(b) The space V of linear ranking func-
tions for the state space in (a).

Fig. 4 State space and ranking space for two 2-bit variables, including the set E of non-S-
injective functions. The grey area illustrates the class of functions that are order-equivalent
to the S-injective ranking function f = 4b1 + 3b2, i.e., f(x1, x2) = 4x1 + 3x2.

space S, defined by s ≺f s′ ≡ f(s) < f(s′). Since S is finite, every such or-
der is well-founded, and can be used as a termination argument for R if the
implication R(s, s′)⇒ s′ ≺f s holds for all s, s′.

We say that a function f ∈ V is S-injective if f(s) 6= f(s′) for all distinct
states s 6= s′ ∈ S. Precisely the S-injective functions give rise to (strict) total
orders ≺f on the state space, while the orders induced by non-S-injective
functions are partial. We further say that two functions f, f ′ ∈ V are order-
equivalent if they induce the same order, i.e., ≺f = ≺f ′ . Obviously, as S is
finite, V is partitioned into finitely many equivalence classes in this way.

Because functions f, f ′ in the same equivalence class can prove the ter-
mination of exactly the same transition relations, we can restrict the search
for ranking functions to specific representatives from each equivalence class.
This will be important when defining the template-based synthesis method in
Sect. 5. Furthermore, it is enough to consider S-injective functions: if the ter-
mination of a transition relation can be shown using a non-S-injective ranking
function, it can also be proven using an S-injective ranking function.

4.2 The Geometry of Equivalence Classes

There is a simple geometric interpretation of the equivalence classes. The set V
has the structure of a rational vector space, and is in fact isomorphic to the
vector space Qm into which the state space S is embedded (it is the dual space
of Qm).
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In the following paragraphs, it will be convenient to work with a standard
basis of Qm and V . Recall that states s ∈ S are mappings X → B+ from
variables to bit-vectors, and for the purpose of this section can be considered as
vectors s =

(
s(x1), s(x2), . . . , s(xm)

)
∈ Qm of rational numbers. We can then

define the standard basis {s1, . . . , sm} ⊆ S, and its dual basis {b1, . . . , bm} ⊆ V
with the help of the following equations (see, e.g., [29]):

si(xj) =

{
1 i = j

0 otherwise
, bi(sj) =

{
1 i = j

0 otherwise
.

A non-S-injective function f has the property that f(s) = f(s′) for some
states s 6= s′. Because states are interpreted as vectors, and f is linear, this
is equivalent to f(s− s′) = 0. For any two states s 6= s′ ∈ S, the set Es,s′ =
{f ∈ V : f(s−s′) = 0} is a hyperplane of the vector space V , which altogether
means that the set of non-S-injective functions is the finite union

E =
⋃

s6=s′∈S

Es,s′

of hyperplanes. The complement P = V \ E is a finite union of open convex
sets, each of which forms the interior of a convex (but unbounded) polyhedron.
This is illustrated in Figure 4(b).

The interiors of these polyhedra coincide with the equivalence classes of
S-injective functions. To see this, note that for each state s ∈ S the func-
tion vs : V → Q, vs(f) = f(s) is continuous. This implies that if f, f ′ ∈ V are
S-injective functions that are not order-equivalent, every continuous path from
f to f ′ in V has to cross E. Furthermore, the classes belonging to different
polyhedra are distinct: for each hyperplane Es,s′ , it holds that f(s− s′) > 0 for
the functions f on one side of the hyperplane, and f ′(s− s′) < 0 for the func-
tions f ′ on the other (because f(s− s′) is linear in f), which implies s ≺f s′
and s′ ≺f ′ s.

4.3 Representatives for Equivalence Classes

Functions f ∈ V can (uniquely) be represented in the form α1b1 + · · ·+ αmbm,
which intuitively can be understood as

f(x1, . . . , xm) = α1x1 + · · ·+ αmxm .

In the rest of the section, we consider linear combinations with integer coeffi-
cients α1, . . . , αm, and derive bounds on the absolute values of the coefficients
such that elements from each equivalence class of S-injective functions can
be represented. These bounds will determine the number of bits needed in
ranking function templates.
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Theorem 2 We fix a non-empty class A ⊆ V of S-injective functions, and
assume that E′ ⊆ E is the union of all hyperplanes Es,s′ that bound A. Each
intersection of m− 1 such hyperplanes (provided that no two of them are par-
allel) is a straight line l that is adjacent to A.

(i) Each such line l is generated by a function fl = α1b1 + · · ·+ αmbm where
|αi| ≤ 2n(m−1) · (m− 1)! for i ∈ {1, . . . ,m}.

(ii) The set A contains a function fA = β1b1 + · · ·+ βmbm where the coeffi-
cients satisfy |βi| ≤ 2n(m−1) ·m! for i ∈ {1, . . . ,m}.

Proof To see that (i) holds, consider a plane Es,s′ = {f ∈ V | f(s− s′) = 0}.
We can choose the representation f = γ1b1 + · · ·+ γmbm, and then expand the
linear equation defining the hyperplane to(

s(x1)− s′(x1)
)
γ1 + · · ·+

(
s(xm)− s′(xm)

)
γm = 0 .

Since we assume that all variables have the bit-width n, the integer coeffi-
cients vi = s(xi) − s′(xi) in this equation are in the range [−2n + 1, 2n − 1].
In order to find a vector in the intersection of m− 1 hyperplanes, we need to
solve a system of m− 1 such linear equations:

v1
1γ1 + · · · + v1

mγm = 0
...

...
vm−1

1 γ1 + · · · + vm−1
m γm = 0

By elementary algebra, an integer solution to this system can be found by
computing the following determinant (Sm is the group of permutations of
{1, . . . ,m}, and the parity sgn(σ) is +1 for even and −1 for odd permuta-
tions σ): ∣∣∣∣∣∣∣∣

v1
1 . . . v1

m

. . . . . . . . . . . . . . . . . . .
vm−1

1 . . . vm−1
m

b1 . . . bm

∣∣∣∣∣∣∣∣ =

m∑
i=1

∑
σ∈Sm

σ(m)=i

sgn(σ)
(m−1∏
j=1

vjσ(j)

)
bi

Because of |vji | < 2n and |Sm| = m!, the absolute value of the coefficient of
each basis vector bi on the right-hand side is bounded by 2n(m−1) · (m− 1)!.

For (ii), we assume that there are m linearly independent lines l1, . . . , lm
(as in (i)) that are adjacent to A. In this case, because A is convex, there is a
sum

fA = c1fl1 + · · ·+ cmflm ∈ A

with ci ∈ {−1,+1} for each i ∈ {1, . . . ,m}. The bounds on the absolute values
of coefficients follow from (i). A similar argument can be used in the case that
no m linearly independent lines exist. ut

In the next section, Theorem 2 will be used to establish the completeness
of a template-based ranking function synthesis method.
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5 Synthesis of Ranking Functions from Templates

A subset of all ranking functions for bit-vector programs can be identified
by templates of a desired class of functions with undetermined coefficients.
In order to find those coefficients, we consider two methods: (i) an encoding
into quantified Boolean formulae (QBF) to check all suitable values, and (ii) a
propositional SAT encoding to check likely values.

We primarily consider linear functions of the program variables. Let x =
(x1, . . . , x|X |) be a vector of program variables and associate a coefficient ci
with each xi ∈ X . The coefficients constitute the vector c = (c1, . . . , c|X |). We
can then construct the template polynomial

p(c, x) :=

|X |∑
i=1

(ci × castw(xi))

with the bit-width w ≥ maxi(α(xi)) + dlog2(|X |+ 1)e and α(ci) = w, chosen
such that no overflows occur during summation. Using the ordering relation <s
to interpret the output of p(c, x) as a signed value, we formulate the following
theorem, which provides a bound on w that guarantees that ranking functions
can be represented for all programs that have linear ranking functions.

Theorem 3 There exists a linear ranking function on path π with transition
relation Rπ(x, x′) if

∃c . ∀x, x′ . Rπ(x, x′)⇒ p(c, x′) <s p(c, x) . (16)

Vice versa, if there exists a linear ranking function for π, then (16) must be
valid whenever4

w ≥ maxi(α(xi)) · (|X | − 1) + |X | · log2 |X |+ 2 . (17)

Proof The first half of the theorem is obvious. The second half of the theorem
is shown using the observations made in Sect. 4. From part (ii) of Theorem 2,
we can derive the number of bits needed for Theorem 3:

dlog2(2n(m−1) ·m! + 1)e ≤ n(m− 1) + log2m! + 1

≤ n(m− 1) +m log2m+ 1

Because both positive and negative coefficients have to be represented, we need
a further bit for the sign, which yields the bound n(m− 1) +m log2m+ 2
given in Theorem 3. ut

We illustrate that the number of bits required in the coefficients of ranking
functions can indeed approach the bound given as right-hand side of (17).

4 In [11], it was incorrectly stated that the constant term in (17) is “1” instead of “2”.
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Consider terminating programs (for which linear ranking functions exist) of
the form

x1 := 1;

repeat {
assume (x1 6= 0 ∨ x2 6= 0 ∨ x3 6= 0 ∨ · · · ∨ x|X | 6= 0);

x|X | := x|X | + (x1 ÷ 255)× (x2 ÷ 255)× . . .× (x|X |−1 ÷ 255)

· · ·
x3 := x3 + (x1 ÷ 255)× (x2 ÷ 255)

x2 := x2 + (x1 ÷ 255)

x1 := x1 + 1

}

where the bit-width of all variables and constants is n. Programs built af-
ter this scheme require ranking functions that order the program states in a
lexicographic fashion. A suitable ranking function is of the form

p(c, x) = · · ·+ c3 × x3 + c2 × x2 + c1 × x1 ,

where c1 = −1, c2 = −2n, c3 = −22n, etc. This means that the corresponding
bit-widths of the coefficients are α(c1) = 2, α(c2) = n+ 2, α(c3) = 2n+ 2, and
in particular

α(c|X |) = (|X | − 1) · n+ 2

≤ maxi(α(xi)) · (|X | − 1) + |X | · log2 |X |+ 2 .

Note that the constant 2 arises from the fact that each coefficient is of the
form −2x for some x, which is not contained in [0, 2x), and we thus need an
extra bit to represent a coefficient of this size and its sign.

It is straightforward to flatten (16) into QBF. Thus, a QBF solver that
returns an assignment for the top-level existential variables is able to compute
suitable coefficients. Examples of such solvers are Quantor [5], sKizzo [4], and
Squolem [21]. In our experiments, we use an experimental version of QuBE [17].

Despite much progress, the capacity of QBF solvers has not yet reached
the level of efficacy of propositional SAT solvers. We therefore consider the
following simplistic way to enumerate coefficients: we restrict all coefficients
to α(ci) = 2 and we fix a concrete assignment γci ∈ {0, 1, 3} to each coefficient
(corresponding to {−1, 0, 1} in 2’s complement). Let γc = (γc1 , . . . , γc|X|).
Negating and applying γc transforms (16) into

¬∃x, x′ . Rπ(x, x′) ∧ ¬(p(γc, x
′) <s p(γc, x)) , (18)

which is a bit-vector (or SMT QF BV ) formula that may be flattened to
a purely propositional formula in the straightforward way. The formula is
satisfiable iff p is not a genuine ranking function. Thus, we enumerate all
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possible γc until we find one for which (18) is unsatisfiable, which means that
p(γc, x) must be a genuine ranking function on π. Even though there are
3|X | possible combinations of coefficient values to test, this method performs
surprisingly well in practice, as demonstrated by our experimental evaluation
in Sect. 6.

Example 4 We consider the program given in Figure 2. The only variable in
the program is i, and it is eight bits wide. We construct the polynomial

p(c, i) = c× cast9(i)

with α(c) = 9. For the only path through the loop in this example, the tran-
sition relation Rπ(i,i’) is i 6= 0 ∧ i’ = i & (i − 1). Solving the resulting
formula

∃c . ∀i, i’ . Rπ(i, i’)⇒ p(c, i’) <s p(c, i)

with a QBF-Solver does not return a result within an hour. We thus rewrite
the formula according to (18) and obtain

¬∃i, i’ . Rπ(i, i’) ∧ ¬(p(c, i’) <s p(c, i))

which we solve (in a negligible amount of runtime) for all choices of c ∈
{0, 1, 3}. The formula is unsatisfiable for c = 1, and we conclude that cast9(i)
is a suitable ranking function. In this particular example, it is possible to omit
the cast.

6 Experiments

6.1 Large-scale Benchmarks

Following Cook et al. [13], we implemented the Terminator algorithm to eval-
uate our ranking synthesis methods. Our implementation uses the SATABS
model checker [9] as the reachability checker, which implements SAT-based
predicate abstraction. Our benchmarks are device drivers from the Windows
Driver Development Kit (WDK).5 The WDK already includes verification har-
nesses for the drivers. We use goto-cc6 to extract model files from a total of
87 drivers in the WDK. A subset of the results is presented in Table 1.

Our tool does not currently implement any techniques for arithmetic ab-
straction and consequently it is not able to find termination proofs for loops
over singly and doubly-linked lists, which many drivers contain. Such abstrac-
tions can be automated by existing shape analysis methods (e.g., as presented
by Yang et al. [33]).

5 Version 6, now superseded by the Windows Driver Kit; see http://msdn.microsoft.

com/en-us/windows/hardware/gg581061
6 http://www.cprover.org/goto-cc/
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2 8 34 1 6 10 13 14 13 # total
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2 4 0 1 3 10 7 7 13 # terminating
0 4 11 0 3 0 5 7 0 # non-terminating
2 0 7 1 1 0 2 2 6 # Rank Functions
1 340 — 61 10 37 — 218 — Time [min]

Table 1 A selection of the results on full driver code. Notes: If ranking functions are
successfully synthesised, but the final safety property is not proven within the time limit, the
loop is classified as non-terminating. The entry ‘—’ indicates that SATABS ran out of time
(6 hrs) or memory (2GB), consequently the numbers of terminating and non-terminating
loops do not add up to the total.

1 2 3 4 5 6 7 8 9 10 11 12 13 Loop

list list unr. i++ unr. unr. unr. unr. wait unr. unr. i++ list Type
126 85 687 248 340 298 253 844 109 375 333 3331 146 CE Time [sec]
0.5 0.1 – 0.7 – – – – 0.4 – – 2.2 0.4 Synth. Time [sec]
× × X MO X X X X × X X MO × Terminates?

Table 2 The behaviour of our implementation when run on the kbdclass driver.

Slicing the Input Just like Cook et al. [13], we find that most of the runtime
is spent in the reachability checker (more than 99%), especially after all re-
quired ranking functions have been synthesised and no more counterexamples
exist. To reduce the resource requirements of the model checker, our termi-
nation prover analyses each loop separately and generates an inter-procedural
slice [19] of the program, slicing backwards from the termination assertion. In
addition, we rewrite the program into a single-loop program, abstracting from
the behaviour of all other loops.7 With this (abstracting) slicer in place, we find
that absolute runtime and memory requirements are reduced dramatically.

As our complete data on Windows drivers is voluminous, we present a
typical example in detail. The keyboard class driver in the WDK (kbdclass)
contains 13 loops in a harness (SDV FLAT HARNESS) that calls all dispatch
functions nondeterministically.

Table 2 provides details on the behaviour of our engine on this driver. For
every loop we list the type (list iteration, i++, unreachable, or ‘wait for de-
vice’), the time it takes to find a potentially non-terminating path (‘CE Time’),
the time required to find a ranking function using our SAT template from
Sect. 5 (‘Synth. Time’, where applicable), and the final result. In the last row,
‘MO’ indicates a memory-out after consuming 2 GB of RAM while proving

7 Following the hypothesis that loop termination seldom depends on complex variables
that are possibly calculated by other loops, our slicing algorithm replaces all assignments
that depend on five or more variables with non-deterministic values, and all loops other than
the analysed one with program fragments that havoc the program state (non-deterministic
assignments to all variables that might change during the execution of the loop).
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while(iNumber < numberOfInterfaces) {
iDesc = USBD_ParseConfigurationDescriptorEx(

ConfigurationDescriptor ,
ConfigurationDescriptor ,
iIndex ,
0, -1, -1, -1);

if(iDesc) {
/* ... */
iNumber ++;

}
iIndex ++;

}

Fig. 5 Code fragment from usb/bulkusb/sys/bulkpnp.c (simplified)

that no further counterexamples to termination exist. The entire analysis of
this driver requires two hours. All experiments were run on 8-core Intel Xeon
3 GHz machines with 16 GB of RAM.

6.2 A Practical Termination Problem

We were able to isolate a possible termination problem in the USB driver
bulkusb that may result in the system being blocked. The driver requests an
interface description structure for every device available by calling an API
function. It increments the loop counter if this did not return an error. The
API function, however, may return NULL if no interface matches the search
criteria, resulting in the loop counter not being incremented.

An excerpt of the driver code is shown in Figure 5. For every device, the
driver requests an interface description structure to be searched. It increments
the loop counter if this did not return an error. The function USBD Parse-
ConfigurationDescriptorEx, however, is an API function for which no implemen-
tation is available. According to the API documentation, it may return NULL if
no interface matches the search criteria (iIndex, 0, -1, -1, -1 in Figure 5,
resulting in iNumber not being incremented. Since numberOfInterfaces is a
local (non-shared) variable of the loop, the problem would persist in a concur-
rent setting, where the device may be disconnected while the loop is executed.

6.3 Experiments on Smaller Examples

The predominant role of the reachability engine on our large-scale experiments
prevents a meaningful comparison of the utility of the various techniques for
ranking function synthesis. For this reason, we conducted further experiments
on smaller programs, where the behaviour of the reachability engine has less
impact. We manually extracted 61 small benchmark programs from the WDK
drivers. Most of them contain bit-vector operations, including multiplication,
and some of them contain nested loops. All benchmarks were manually sliced
by removing all source code that does not affect program termination (much
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like an automated slicer, but more thoroughly). We also employ the same
abstraction technique as described in the previous section. All but ten of
the benchmark programs terminate. The time limit in these benchmarks was
3600 sec, and the memory consumption was limited to 2 GB.

To evaluate the integer linear programming method described in Sect. 3.2,
we developed the prototype Seneschal.8 It is based on the prover Princess [28]
for PA with uninterpreted predicates and works by (i) translating a given
bit-vector program into a PA formula, (ii) eliminating the quantifiers in the
formula, (iii) flattening the formula to a disjunction of systems of inequali-
ties, and (iv) applying Lem. 5 to compute ranking functions. Seneschal does
currently not, however, transform systems of inequalities to integral systems,
which means that it is a sound but incomplete tool; the experiments show
that transformation to integral systems is unnecessary for the majority of the
considered programs.

The results of our evaluation are summarized in Table 3. The second col-
umn indicates the result obtained by manual inspection, i.e., if a specific bench-
mark is terminating, and if so whether there is a linear ranking function to
prove this. The other columns represent the following ranking synthesis ap-
proaches: SAT is the coefficient enumeration approach from Sect. 5; Seneschal
is the integer linear programming approach from Sect. 3.2.1; Rankfinder is the
linear programming approach over rationals from Sect. 3.1; QBF [-1,+1] is a
QBF template approach from Sect. 5 with coefficients restricted to [−1,+1],
such that the template represents the same ranking functions as the one used
for the SAT enumeration approach. QBF P (c, x) is the unrestricted version
of this template. Note that two benchmarks (#27 and #34) are negatively
affected by our slicer: due to the abstraction, no linear ranking functions
are found. On the original, unsliced programs, the SAT-based approach and
Seneschal find suitable ranking functions, on benchmark #34 however, the
model checker times out while attempting to prove that the function that was
found is sufficient.

Comparing the various techniques, we conclude that the simple SAT-based
enumeration is most successful in synthesising useful ranking functions. It is
able to prove 34 out of 51 terminating benchmarks and reports 27 as non-
terminating (the latter of which are reported as possibly non-terminating due
to the incompleteness of the approach). It does not time out on any instance.
Seneschal exhibits similar performance: it proves 31 programs as terminating,
almost as many as the SAT-based template approach. It reports 25 benchmarks
as (possibly) non-terminating and times out on five.

For the experiments using Rankfinder,9 the bit-vector operators +, × with
literals, =, <s and <u are approximated by the corresponding operations
on the rationals, whereas nonexistence of ranking functions is reported for
programs that use any other operations. Furthermore, we add constraints of
the form 0 ≤ v < 2n, where n is the bit-width of v, restricting the range of pre-

8 http://www.philipp.ruemmer.org/seneschal.shtml
9 http://www7.in.tum.de/~rybal/rankfinder/
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state variables. This results in 23 successful termination proofs, and 35 cases
of alleged non-termination. In three cases, the model checker times out on
proving the final property, and in 5 cases Rankfinder returns an unsuitable
ranking function, with the consequence that a counterexample is not correctly
excluded and subsequent abortion of the prover.

For the two QBF-based techniques, we used an experimental version of
QuBE, which performed better than sKizzo, Quantor, and Squolem in pre-
vious experiments. The constrained template (QBF [−1,+1]) is still able to
synthesise some useful ranking functions within the time limit. It proves nine
benchmarks terminating and reports eleven as (possibly) non-terminating. The
unconstrained approach (QBF P (c, x)), however, proves only five programs
terminating and one (possibly) non-terminating, with the QBF solver timing
out on all other benchmarks.

We also implemented the approach suggested by Biere et al. [6] (right-
most column of Table 3). This approach does not require synthesis of ranking
functions, but instead proves that an entry state of the loop is never revisited.
Generally, these assertions are difficult for SATABS. While this method is able
to show only 14 programs terminating, there are four benchmarks (#31, #45,
#50, and #61) that none of the other methods can handle as they require
non-linear ranking functions.

In conclusion, our evaluation shows that the methods presented in this ar-
ticle outperform known approaches both in terms of runtime and precision.
While existing approaches are sometimes able to synthesise non-linear ranking
functions (e.g., Biere et al.), or they are sometimes able to find linear rank-
ing functions faster (e.g., Rankfinder), their overall performance is greatly
exceeded by our SAT- and LP-based approaches.

Our benchmark suite, all results with added detail, and additional experi-
ments are available online at http://www.cprover.org/termination/.

7 Related Work

Numerous efficient methods are now available for the purpose of finding rank-
ing functions (e.g., [2,7,15,24]). Some tools are complete for the class of rank-
ing functions for which they are designed (e.g., [24]), others employ a set of
heuristics (e.g., [2]). Until now, no known tool has supported machine-level
integers.

Wintersteiger et al. [32] provide a decision procedure for quantified bit-
vector logic with uninterpreted functions (SMT UFBV ). This logic allows for
a direct encoding of ranking function checks as

∃f ∀x, x′ . Rπ(x, x′)⇒ f(x′) < f(x) ,

where the range of f is a bit-vector of some pre-defined size. It has been demon-
strated that when restricted to the same polynomial templates as presented
in Section 5, their approach performs similar to our SAT-based enumeration
approach while maintaining (relative) completeness. Their decision procedure
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# Manual SAT Seneschal Rankfinder QBF [-1,+1] QBF P (C,X ) Biere et al. [6]
1 L 52.07  17.67  0.05 # – – – – – –
2 L 1.16  22.02  1.19  – – – – – –
3 L 0.30  10.97  0.03 # 49.45  567.79  – –
4 L 0.29  7.60  0.37  16.28  220.65  10.95  
5 N 0.18 # 15.15 # 0.04 # 0.78 # – – – –
6 N 0.18 # 20.33 # 0.03 # 1.57 # – – – –
7 N 17.93 # – – 0.03 # – – – – – –
8 L 0.40  8.36  0.36  – – – – – –
9 T 0.12 # 8.05 # 0.08 G# – – – – – –

10 N 0.25 # 9.62 # 0.02 # 0.78 # – – 0.04 #
11 T 0.28 # 11.54 # 0.04 # – – – – – –
12 L 0.25  7.57  0.31  2.45  18.75  50.32  
13 L 0.28  8.68  0.04 # – – – – 88.27  
14 N 0.28 # 7.88 # 0.04 G# – – – – – –
15 T 0.57 # 14.82 # 0.27 G# – – – – – –
16 L 1.65  12.12  0.51  – – – – – –
17 L 1.10  16.86  0.26 # – – – – – –
18 L 9.88  14.54  0.68  – – – – – –
19 L 0.38  7.47  0.16  – – – – – –
20 L 0.31  8.56  0.01 # – – – – 1.09  
21 T 8.09 # 0.07 # 0.06 # – – – – – –
22 L 0.36  – – 0.02 # – – – – – –
23 L 0.44  14.09  0.48  13.81  570.24  1.09  
24 L 0.60  8.36  0.69  – – – – – –
25 L 0.35  7.64  0.18  – – – – – –
26 L 0.38  7.70  0.20  – – – – – –
27 L 1.65 # 16.36 # 0.20 G# – – – – – –
28 N 0.08 # 8.95 # 0.03 # 0.24 # – – 9.02 #
29 T 0.29 # 8.15 # – – – – – – – –
30 L 0.30  – – 0.02 # 1735.81  – – – –
31 T 0.10 # 23.16 # 0.03 # 0.25 # – – 2.46  
32 T 1.00 # 6.04 # 0.10 # 0.79 # – – – –
33 L 0.39  7.52  0.16  – – – – – –
34 L 1114.95 # 217.93 # 0.05 # – – – – – –
35 N 0.36 # 16.07 # 0.39 # – – – – – –
36 L 0.32  7.43  0.20  – – – – 1.83  
37 T 0.80 # 14.66 # 0.54 G# – – – – – –
38 L 0.35  7.22  0.38  – – – – – –
39 L 4.37  11.80  2.10  – – – – – –
40 L 0.14  1071.52  0.03 # 1.26  – – 18.39  
41 L 0.44  11.00  0.03 # – – – – – –
42 L 0.71  15.09  0.77  – – – – – –
43 L 2.59  8.00  2.26  2.96  – – – –
44 N 0.29 # 6.76 # 0.31 # 17.43 # 572.51 # – –
45 T 0.28 # 9.62 # 0.02 # – – – – 0.55  
46 L 0.28  7.31  0.29  – – – – 0.19  
47 L 0.14  7.77  0.09  1.37  – – 40.43  
48 T 0.24 # 8.44 # 0.02 # – – – – – –
49 T 0.24 # 7.72 # 0.03 # 0.62 # – – – –
50 T 0.23 # 8.18 # 0.03 # 0.66 # – – 1310.13  
51 L 0.46  13.98  0.47  21.03  218.50  4.92  
52 T 0.24 # 7.44 # – – 1.31 # – – – –
53 T 0.30 # 3.31 # 0.07 # – – – – – –
54 N 0.25 # 7.02 # – – – – – – – –
55 L 0.28  7.48  0.29  – – – – – –
56 L 1.01  8.57  0.04 # – – – – – –
57 L 0.61  14.76  0.67  – – – – – –
58 L 14.61  24.31  1.56  – – – – – –
59 L 0.21  – – 0.03 # – – – – – –
60 N 0.24 # 7.75 # 0.03 # 0.74 # – – 0.04 #
61 T 6.68 # – – 0.05 # – – – – 1.88  

L Terminating, and linear T Terminating (non-linear)
ranking functions exist. N Non-terminating

 Termination was proven G# Incorrect under bit-vector semantics
# (Possibly) Non-terminating ‘–’ Memory or time limits exhausted

Table 3 Experimental results on 61 benchmarks drawn from Windows device drivers (run-
time in seconds).
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therefore presents a solution to the performance problems of QBF solvers re-
ferred to in Sections 5 and 6.

Bradley et al. [7] give a complete search-based algorithm to generate linear
ranking functions together with supporting invariants for programs defined
in Presburger arithmetic. We propose a related constraint-based method to
synthesise linear ranking functions for such programs. It is worth noting that
our method is a decision procedure for the existence of linear ranking functions
in this setting, while the procedure in [7] is sound and complete, but might
not terminate when applied to programs that lack linear ranking functions.
An experimental comparison with Bradley et al.’s method is future work.

Ranking function synthesis is not required if the program is purely a finite-
state system. In particular, Biere, Artho and Schuppan describe a reduction
of liveness properties to safety by means of a monitor construction [6]. The
resulting safety checks require a comparison of the entire state vector whereas
the safety checks for ranking functions refer only to few variables. Our ex-
perimental results indicate that the safety checks for ranking functions are in
most cases easier. Another approach for proving termination of large finite-
state systems was proposed by Ball et al. [3]. Their technique relies on the
fact that some abstractions (of infinite-state systems) imply the existence of
well-founded orders on the state space. Since neither one of these techniques
leads to the explicit construction of ranking functions, it is not clear how they
can be integrated into systems whose aim is to prove termination of programs
that mix machine integers with data-structures, recursion, and/or numerical
libraries with arbitrary precision.

Falke et al. [16] propose a sound abstraction of bit-vector programs to
integer-based term rewriting systems. This sacrifices completeness, but en-
ables the use of polynomial interpretations over (unbounded) integers in the
rewriting system analyser, to the effect that non-linear ranking functions can
be synthesised from some input programs.

8 Conclusion

The development of efficient ranking function synthesis tools has led to more
powerful automatic program termination provers. While synthesis methods
are available for a number of domains, efficient procedures for programs over
machine integers have until now not been known. We have presented two new
algorithms solving the problem of ranking function synthesis for bit-vectors:
(i) a complete method based on a reduction to quantifier-free Presburger arith-
metic, and (ii) a template-matching method for finding ranking functions of
specified classes. Through experimentation with examples drawn from Win-
dows device drivers we have shown their efficiency and applicability to systems-
level code. The bottleneck of the methods is the reachability analysis engine.
We will therefore consider optimizations for this engine specific to termination
analysis as future work. A further opportunity for future work is termination
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analysis for low-level concurrent software with weak memory semantics, e.g.,
by means of instrumentation [1].
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I Kongresu metematyków slowiańskich, Warsaw 1929, pp. 92–101 (1930)
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