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Abstract. This paper proposes a Graph Neural Network-guided algo-
rithm for solving word equations, based on the well-known Nielsen trans-
formation for splitting equations. The algorithm iteratively rewrites the
first terms of each side of an equation, giving rise to a tree-like search
space. The choice of path at each split point of the tree significantly im-
pacts solving time, motivating the use of Graph Neural Networks (GNNs)
for efficient split decision-making. Split decisions are encoded as multi-
classification tasks, and five graph representations of word equations are
introduced to encode their structural information for GNNs. The al-
gorithm is implemented as a solver named DragonLi. Experiments are
conducted on artificial and real-world benchmarks. The algorithm per-
forms particularly well on satisfiable problems. For single word equations,
DragonLi can solve significantly more problems than well-established
string solvers. For the conjunction of multiple word equations, DragonLi
is competitive with state-of-the-art string solvers.

Keywords: Word equation · Graph neural network · String theory.

1 Introduction

Over the past few years, reasoning within specific theories, including arithmetic,
arrays, or algebraic data structures, has become one the main challenges in au-
tomated reasoning. To address the needs of modern applications, new techniques
have been developed, giving rise to SMT (Satisfiability Modulo Theories) solvers.
SMT solvers implement efficient decision procedures and reasoning methods for
a wide range of theories, and are used in applications such as verification.

Among the theories supported by SMT solvers, the theory of strings has in
particular received attention in the last years. Strings represent one of the most
important data-types in programming, and string constraints are therefore rele-
vant in various domains, from text processing to database management systems
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and web applications. One of the simplest kind of constraints supported by the
SMT-LIB theory of strings [12] are word equations, i.e., equations in a free semi-
group [30]. Makanin’s work [36] demonstrated the decidability of the word equa-
tion problem, which was later confirmed to be in PSPACE [44]. However, even
the leading SMT solvers with support for string constraints (including cvc5 [10],
Z3 [39], Norn [5], TRAU [6], Ostrich [16], Woorpje [19], and Z3-Noodler [17]) tend
to be incomplete for proving the unsatisfiability of word equations, illustrating
the hardness of the theory.

Solving a word equation is to check for the existence of string values for
variables that make equal both sides of the equation. For example, consider the
equation Xab = Y aZ, where X,Y , and Z are variables ranging over strings, and
a and b are letters. This equation is satisfiable and has multiple solutions. For
example, assigning a to both X and Y and b to Z results in aab = aab.

This paper presents an algorithm that makes use of Graph Neural Networks
(GNN) [13] in order to solve word equations. It is an extension of the method
proposed in [4] and implemented in Norn [5], referred to as the split algorithm.
The split algorithm is, in turn, based on the well-known Nielsen transforma-
tion [40]. It builds a proof tree by iteratively applying a set of inference (split)
rules on a word equation.

One critical aspect of the algorithm lies in selecting the next branch to be ex-
plored while constructing the proof tree, which significantly influences the solving
time. To address this, we present a heuristic that leverages deep learning to deter-
mine the exploration order of branches. GNNs [13] represent one of the paradigms
in neural network research, tailored for non-Euclidean, graph-structured data.
This makes them suited for scenarios where data points are interconnected, such
as social networks [22], molecular structures [23], programs [38,9], and logical
formulae [50,29,41,18]. Our work represents, to the best of our knowledge, the
first use of deep learning in the context of word equations.

Figure 1 illustrates the workflow of our approach. During the training stage,
we initially employ the split algorithm (without GNN guidance) to solve word
equation problems drawn from a training dataset. For each satisfiable (SAT)
problem, we generate a corresponding proof tree. Within this tree, each branch
(pair of a node and a direct child) is evaluated to determine whether it leads
to a solution, as well as its distance to the corresponding leaf. Based on this
information, we assign labels to each branch to indicate whether it is a favorable
choice for reaching a solution. Subsequently, we model each branching point
comprising the node and its child nodes as a graph. These graph representations,
along with their associated labels, are then used to train the GNN.

In the prediction stage, word equations from an evaluation dataset are pro-
cessed using the split algorithm, now guided by GNN. At each branching point,
the current branch is first transformed into a graph representation, which is in
turn fed to the trained GNN model. The GNN, using its learned insights, advises
on which branch should be prioritized and explored first.

We implemented this algorithm in the DragonLi tool. Experiments were con-
ducted using four word equation benchmarks: three of them are artificially gen-
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Fig. 1: The workflow diagram for the training and prediction stage

erated and inspired by Woorpje [19]; a fourth one is extracted from SMT-LIB
benchmarks [1] and encodes real-world problems. Results show that for SAT
problems, the pure split algorithm without GNNs is already competitive with
some leading string solvers (Z3 [39], cvc5 [10], Ostrich [16], Woorpje [19], Z3-
Noodler [17]), while it performs less well on UNSAT problems. We conjecture
that this is due to the (relatively straightforward) depth-first search performed
by our implementation of the split algorithm, which is a good strategy for finding
solutions, whereas other solvers devote more time (e.g., using length reasoning)
to show that formulas are unsatisfiable. Enabling GNN guidance in DragonLi
uniformly improves performance on SAT problems, allowing it to outperform all
other solvers in one specific benchmark. Specifically, in Benchmark 2, the GNN-
guided version of DragonLi solves 115% more SAT problems than its non-GNN-
guided counterpart and 43.0% more than the next best string solver, Woorpje.

In summary, the contributions of this paper are as follows:

– We define a proof system based on the split algorithm for solving word equa-
tions, tailored to combining symbolic reasoning with GNN-based guidance.

– Based on the proof system, we introduce an algorithm for integrating GNN-
based guidance with the proof system.

– To train a GNN on the data obtained from solving word equations, we present
five possible graph representations of word equations.

– We present an extensive experimental evaluation on four word equation
benchmarks, comparing, in particular, the different graph encodings and
different backtracking strategies of the algorithm.

2 Preliminaries

We start by defining the syntax of word equations, as well as the notion of
satisfiability. Then, we explain the fundamental mechanism of Graph Neural
Networks (GNNs), along with a description of the specific GNN model we have
employed in our experiments.
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Word Equations. We assume a finite non-empty alphabet Σ and write Σ∗ for
the set of all strings (or words) over Σ. We work with a set Γ of string variables,
ranging over words in Σ∗, and denote the empty string by ϵ. The symbol ·
denotes the concatenation of two strings; in our examples, we often write uv as
shorthand for u · v. The syntax of word equations is defined as follows:

Formulae ϕ ::= true | e ∧ ϕ Words w ::= ϵ | t · w
Equations e ::= w = w Terms t ::= X | c

where X ∈ Γ ranges over variables and c ∈ Σ over letters.

Definition 1 (Satisfiability of word equations). A formula ϕ is satisfiable
if there exists a substitution π : Γ → Σ∗ such that, when each variable X ∈ Γ
in ϕ is replaced by π(X), all equations in ϕ are satisfied.

Graph Neural Networks. A Graph Neural Network (GNN) [13] uses Multi-
Layer Perceptrons (MLPs) to extract features from a given graph. MLPs, also
known as multi-layer neural networks [25], transform an input space to make
different classes of data linearly separable, and this way learn representations
of data with multiple levels of abstraction. Each layer of an MLP consists of
neurons that apply a nonlinear transformation to the inputs received from the
previous layer. This allows MLPs to learn increasingly complex patterns as data
moves from the input layer to the output layer.

Message passing-based GNNs (MP-GNNs) [24] are designed to learn features
of graph nodes (and potentially the entire graph) by iteratively aggregating
and transforming feature information from the neighborhood of a node. For
instance, if we represent variables in a word equation by nodes in a graph,
then node features could represent symbol type (i.e., being a variable), possible
assignments, or the position in the word equation.

Consider a graph G = (V,E), with V as the set of nodes and E ⊆ V × V as
the set of edges. Each node v ∈ V has an initial representation xv ∈ Rn and a
set of neighbors Nv ⊆ V . In an MP-GNN comprising T message-passing steps,
node representations are iteratively updated. At each step t, the representation
of node v, denoted as ht

v, is updated using the equation:

ht
v = ηt(ρt({ht−1

u | u ∈ Nv}), ht−1
v ), (1)

where ht
v ∈ Rn is the updated representation of node v after t iterations, starting

from the initial representation h0
v = xv. The node representation of u in the

previous iteration t − 1 is ht−1
u , and node u is a neighbor of node v. In this

context, ρt : (Rn)|Nv| → Rn is an aggregation function with trainable parameters
(e.g., an MLP followed by sum, mean, min, or max) that aggregates the node
representations of v’s neighboring nodes at the t-th iteration. Along with this, ηt :
(Rn)2 → Rn is an update function with trainable parameters (e.g., an MLP) that
takes the aggregated node representation from ρt and the node representation of
v in the previous iteration as input, and outputs the updated node representation
of v at the t-th iteration.
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MP-GNNs operate under the assumption that node features can capture
structural information from long-distance neighbors by aggregating and updat-
ing features of neighboring nodes. After T message-passing steps, an MP-GNN
yields an updated node representation (feature) that includes information from
neighbors within a distance of T , applicable to various downstream tasks like
node or graph classification.

In this study, we choose Graph Convolutional Networks (GCNs) [31] to guide
our algorithm. In GCNs, the node representation ht

v of v at step t ∈ {1, ..., T}
where T ∈ N is computed by

ht
v = ReLU(MLPt(mean{ht−1

u | u ∈ Nv ∪ {v}})), (2)

where each MLPt is a fully connected neural network, ReLU (Rectified Linear
Unit) [8] is the non-linear function f(x) = max(0, x), and h0

v = xv.

3 Search Procedure and Split Algorithm

In this section, we define our proof system for word equations, the notion of a
proof tree, and show soundness and completeness. We then introduce an algo-
rithm to solve a conjunction of word equations.

3.1 Split Rules

We introduce four types of proof rules in Figure 2, each corresponding to a spe-
cific situation. The proof rules are inspired by [4], but streamlined and formulated
differently. Each proof rule is of the form:

Name
P

[cond1 ]
C1

. . .
[condn ]
Cn

Here, Name is the name of the rule, P is the premise, and Cis are the conclu-
sions. Each condi is a substitution that is applied implicitly to the corresponding
conclusion Ci, describing the case handled by that particular branch. In our case,
P is a conjunction of word equations and each Ci is either a conjunction of word
equations or a final state, SAT or UNSAT.

To introduce our proof rules, we use distinct letters a, b ∈ Σ and variables
X,Y ∈ Γ , while u and v denote sequences of letters and variables.

Rules R1, R2, R3, and R4 (Figure 2a) define how to simplify word equations,
and how to handle equations in which one side is empty. In R3, note that the
substitution X 7→ ϵ is applied to the conclusion ϕ. Rules R5 and R6 (Figure 2b)
refer to cases in which each word starts with a letter. The rules simplify the
current equation, either by removing the first letter, if it is identical on both sides
(R5), or by concluding that the equation is UNSAT (R6). Rule R7 (Figure 2c)
manages cases where one side begins with a letter and the other one with a
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true
R1

SAT

ϵ = ϵ ∧ ϕ
R2

ϕ

X = ϵ ∧ ϕ
R3

[X 7→ ϵ]

ϕ

a · u = ϵ ∧ ϕ
R4

UNSAT

with X ∈ Γ and a ∈ Σ.

(a) Simplification rules

a · u = a · v ∧ ϕ
R5

u = v ∧ ϕ

a · u = b · v ∧ ϕ
R6

UNSAT

with a, b two different letters from Σ.

(b) Letter-letter rules

R7
X · u = a · v ∧ ϕ

[X 7→ ϵ]
u = a · v ∧ ϕ

[X 7→ a ·X ′]
X ′ · u = v ∧ ϕ

with X ′ a fresh element of Γ .

(c) Variable-letter rules

R8
X · u = Y · v ∧ ϕ

[X 7→ Y ]
u = v ∧ ϕ

[X 7→ Y · Y ′]
Y ′ · u = v ∧ ϕ

[Y 7→ X ·X ′]
u = X ′ · v ∧ ϕ

with X ′, Y ′ fresh elements of Γ .

(d) Variable-variable rule

Fig. 2: Rules of the proof system for word equations

variable. The rule introduces two branches, since the variable must either denote
the empty string ϵ, or its value must start with the same letter as the right-hand
side. Rule R8 (Figure 2d) handles the case in which both sides of an equation
start with a variable, implying that either both variables have the same value or
the value of one is included in the value of the other.

We implicitly assume symmetric versions of the rules R3, R4, and R7, swap-
ping left-hand side and right-hand side of the equation that is rewritten. For
instance, the symmetric rule for R3 would have premise ϵ = X ∧ ϕ.

Although our proof system is not complete for proving the unsatisfiability of
word equations, we can observe that the proof rules are sound and locally com-
plete. A proof rule is said to be sound if the satisfiability of the premise implies
the satisfiability of one of the conclusions. It is said to be locally complete if the
satisfiability of one of the conclusions implies the satisfiability of the premise.

Lemma 1. The proof rules in Figure 2 are sound and locally complete.
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SAT SAT SAT UNSAT

Fig. 3: Proof tree resulting from the word equation XbY = bXXZ

3.2 Proof Trees

Iteratively applying the proof rules to a conjunction of word equations gives rise
to a proof tree growing downwards. Given the proof rules R1, . . . , R8 in Figure 2,
we represent a proof tree as a tuple τ = (N,α,E, λ) where:

– N is a finite set of nodes;
– E ⊆ N × N is a set of edges, such that (N,E) is a directed tree. An edge

(ni, nj) ∈ E implies that nj is derived from ni by applying a proof rule;
– α : N → For ∪ {SAT,UNSAT} is a function mapping each node n ∈ N to a

formula or to a label SAT, UNSAT;
– λ : E → R is a function that assigns to each edge a proof rule.

A path in the proof tree is a sequence of edges starting from the root and ending
with a leaf node. Due to local completeness, if there is a leaf node that is SAT,
then the word equation at the root node is satisfiable. Due to soundness, if all
the leaf nodes are UNSAT, then the formula at the root node is unsatisfiable.

Figure 3 illustrates the proof tree generated by applying the proof rules in
Figure 2 on the word equation ϕ = (XbY = bXXZ). In this example, b ∈ Σ and
X,Y, Z ∈ Γ . The application of R7 on the root generates two branches. While
exploring the left branch first yields a solution (SAT) at a depth of 3, iteratively
navigating through the right branch of R7 leads to non-termination since the
length of the word equation keeps increasing.

3.3 GNN-Guided Split Algorithm

We use the proof rules in Figure 2 and the idea of iterative deepening from [32]
(combination of depth- and breadth-first search in a tree) to solve word equa-
tions, as shown in Algorithm 1. This algorithm aims to check the satisfiability
of word equations ϕ = (

∧n
i=1 w

l
i = wr

i ).
Algorithm 1 receives as parameter a backtrack strategy BT ∈ {BT 1,BT 2,

BT 3}, which determines when to stop exploring a path of the proof tree and re-
turn to a previous branching point. The algorithm calls the function solveEqsRec
(Algorithm 2), which returns the satisfiability status by exploring a proof tree
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recursively. At each branching point in this tree, if at least one child node is SAT,
the algorithm concludes that ϕ is SAT and terminates (Line 13 of solveEqsRec).
Conversely, if every child node is UNSAT, the current node is marked as UNSAT
(Line 19 of solveEqsRec), and the algorithm backtracks to the last branching
point. A formula ϕ is considered UNSAT only after all branches have been
checked and found to be UNSAT.

We explore three different backtrack strategies, BT 1, BT 2, and BT 3:

– BT 1: This strategy performs depth-first search until it finds a SAT node or
exhausts all branches to conclude UNSAT. It may lead to non-termination
of the algorithm in proof trees with infinite branches, and can miss solutions;
an example for this is the rightmost branch of Figure 3.

– BT 2: This hybrid strategy imposes a limit, lBT2
, on the depth to which a

proof branch is explored. When the maximum depth lBT2
is reached, the

proof search backtracks to the last branching point, and lBT2
is globally

increased by lstepBT2
(line 3 of solveEqsRec). Similarly as BT 1, this strategy

can miss solutions of word equations.
– BT 3: This strategy performs the classical depth-first search with iterative

deepening, by setting an initial limit lBT3 on the exploration depth. This
limit is increased (line 8 of solveEqs) when no node with label SAT is found
but the tree was not fully explored yet. This strategy is complete in the sense
that it will eventually find a solution for every satisfiable formula.

The performance and termination of the algorithm are highly influenced by
the order in which we explore the proof tree. This order is determined by the
orderBranches function (Line 8 of solveEqsRec). Our main goal in this paper is
to study whether the integration of GNN models within orderBranches is able
to optimise solving time or make it more likely for the algorithm to terminate.

For a conjunction of multiple word equations, deciding which word equation
to work on first is also important for performance. Our current proof rules only
rewrite the leftmost equation in a conjunction; reordering word equations is
beyond the scope of this paper. We discuss this point further in Section 7.

The correctness of Algorithm 1 directly follows from the soundness and local
completeness of the proof rules in Figure 2:

Lemma 2 (Soundness of Algorithm 1). For a conjunction of word equations
ϕ, if Algorithm 1 terminates with the result SAT or UNSAT, then ϕ is SAT or
UNSAT, respectively.

4 Guiding the Split Algorithm

This section describes how to train and apply the GNNs in the orderBranches
function in Algorithm 2. We start by describing five graph representations for
a conjunction of word equations, which encode word equations in form of text
to graph representations to be readable by GNNs. Then, we explain how to
train our classification tasks on GNNs and collect the training data. Finally, we
describe different ways to apply the predicted results back to algorithm.
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Input: Alphabet Σ and variables Γ ;

Word equations ϕ = (
∧n

i=1 w
l
i = wr

i );
Backtrack strategy BT ∈ {BT 1,BT 2,BT 3};
Global backtrack limits lBT2 , l

step
BT2

, lBT3 .
Output: The status of ϕ: SAT, UNSAT, or UNKNOWN

1 begin
2 res ← UNKNOWN
3 if BT ∈ {BT 1,BT 2} then
4 res ← solveEqsRec(ϕ, 0,BT , Σ, Γ )

5 if BT = BT 3 then
6 do
7 res ← solveEqsRec(ϕ, 0,BT 3, Σ, Γ )
8 lBT3 ← lBT3 + 1

9 while res ̸= UNKNOWN

10 return res

Algorithm 1: The top-level algorithm solveEqs for word equations

Input: Alphabet Σ and variables Γ ;

Word equations ϕ = (
∧n

i=1 w
l
i = wr

i );
Backtrack strategy BT ∈ {BT 1,BT 2,BT 3};
Current exploration depth currentDepth;

Global backtrack limits lBT2 , l
step
BT2

, lBT3 .
Output: The state of ϕ: SAT, UNSAT, or UNKNOWN

1 begin
2 if BT = BT 2 ∧ currentDepth ≥ lBT2 then

3 lBT2 ← lBT2 + lstepBT2

4 return UNKNOWN

5 if BT = BT 3 ∧ currentDepth ≥ lBT3 then
6 return UNKNOWN

7 branches ← applyRules(ϕ,Σ, Γ )
8 branches ← orderBranches(branches)
9 unknownFlag ← false

10 foreach child in branches do
11 res ← solveEqsRec(child , currentDepth + 1,BT , Σ, Γ )
12 if res = SAT then
13 return SAT

14 if res = UNKNOWN then
15 unknownFlag ← true

16 if unknownFlag then
17 return UNKNOWN
18 else
19 return UNSAT

Algorithm 2: Recursive exploration solveEqsRec of word equations
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4.1 Representing Word Equations by Graphs

Graph representations can capture the structural information in word equations
and are the standard input format for GNNs. To understand the impact of the
graph structure on our framework, we have designed five graph representations
for word equations.

In order to extract a single graph from the equations, we first translate a
conjunction

∧n
i=1 w

l
i = wr

i of word equations to a single word equation, by
inserting a distinguished letter # /∈ Σ as follows:

wl
1#wl

2#...#wl
n = wr

1#wr
2#...#wr

n, (3)

Then, we construct the graph representations for the word equation in (3).
A graph representation G = (V,E, VT, VVar) of a word equation consists of a set
of nodes V , a set of edges E ⊆ V × V , a set of terminal nodes VT ⊆ V , and a
set of variable nodes VVar ⊆ V . We start constructing the graph by drawing the
“=” symbol as the root node. Its left and right children are the leftmost terms of
both sides of the equation, respectively. The rest of the graph is built following
the choice of the graph type:

– Graph 1: Inspired by Abstract Syntax Trees (ASTs). Each letter and vari-
able is represented by its own node, and words are represented by singly-
linked lists of nodes.

– Graph 2: An extension of Graph 1, introducing additional edges from each
term node back to the root node.

– Graph 3: An extension of Graph 1 which incorporates unique variable
nodes. In this design, nodes representing variables are added, which are con-
nected to their respective occurrences in the linked lists. This representation
aims at facilitating the learning of long-distance variable relationships by
GNNs.

– Graph 4: Similar in approach to Graph 3, but introducing unique nodes for
letters instead of variables.

– Graph 5: A composite structure that merges the concepts of Graphs 3 and
4. It includes unique nodes for both variables and letters..

Figure 4 illustrates the five graph representations of the conjunction of word
equation aXY#bc = XY#Zc, where {X,Y, Z} ⊆ Γ and {a, b, c} ⊆ Σ.

4.2 Training of Graph Neural Networks

Forward Propagation. In the orderBranches function of Algorithm 1, we sort
the branches by using the predictions from a trained GNN model. This GNN
model performs a multi-classification task. Given a list of branches (b1, . . . , bn)
resulting from a rule application, we expect the trained GNN model to output
a list of floating-point numbers Ŷn = (ŷ1, . . . , ŷn), representing priorities of the
branches. A higher value for ŷi indicates a higher priority of the branch. For
instance, given a node with two children b1 and b2, the output from the model
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=

Equal sign     Variable     Terminal     Special symbol #

#

a

=

X

#

Y

b

c

X

Y

#

z

X

Y

Z

c

a

=

X

#

Y

b

c

X

Y

#

z

c

a

=

X

#

Y

b

c

X

Y

#

z

a

b

c

c

a

=

X

#

Y

b

c

X

Y

#

z

X

Y

Z

a

b

c

c

a

=

X

#

Y

b

c

X

Y

#

z

c

Graph 1 Graph 2 Graph 3 Graph 4 Graph 5

Fig. 4: The five graph representations for the word equation aXY#bc = XY#Zc
where X,Y, Z are variables and a, b, c are terminals

could be Ŷ2 = (0.3, 0.7), expressing the prediction that b2 will lead to a solution
more quickly than b1 and should be explored first. We detail the process of
deriving Ŷn at each split point using GNNs, exemplified by using n = 2.

Propagation on Graphs. To explain forward propagation, suppose a node
labelled with formula ϕ0 in the proof is rewritten by applying rule R7, resulting
in direct children labelled with ϕ1, ϕ2. The situation is similar for applications
of R8.

Formulas ϕ0, ϕ1, and ϕ2 are transformed to graphs G0 = (V 0, E0, V 0
T , V

0
Var),

G1 = (V 1, E1, V 1
T , V

1
Var), and G2 = (V 2, E2, V 2

T , V
2
Var), respectively, according to

one of the encodings in Section 4.1. Each node in those graphs is then assigned
an initial node representation in Rm, which is determined by the node type:
variable, letter, =, or #. This gives rise to three initial node representation
functions H0

i : V i → Rm for i ∈ {1, 2, 3}, mapping the nodes of the graphs to
vectors of real numbers.

Equation (2) defines how node representations are updated. Iterating the up-
date rule, we obtain node representations Ht

i = GCN(Ht−1
i , Ei) for i ∈ {1, 2, 3}

and t ∈ {1, . . . , T}, where the relation Ei is used to identify neighbours. Subse-
quently, representation of the graphs as a whole are derived by summing up the
node representations at point T , resulting in HGi

=
∑

v∈V i HT
i (v).

Finally, these graph representations are concatenated and fed to a classifier
MLP : (Rm)3 → R2 to calculate scores Ŷ2 = MLP(HG0

||HG1
||HG2

), where ||
denotes concatenation of vectors. The whole process generalizes in a straightfor-
ward way to branching points in the proof tree with n children.

Backward Propagation. The trainable parameters of the model, as described
above, are the initial node representations for the four types of graph nodes
and the parameters of the GCNs. Those trainable parameters are optimized
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together by minimizing the categorical cross-entropy loss between the predicted
label ŷi ∈ Ŷn and the true label yi ∈ Yn, using the following equation:

loss = − 1

N

N∑
1

yi log(ŷi) (4)

where N is the number of split points in a training batch. We explain how to
collect the training data Yn in the next section.

4.3 Training Data Collection

With our current algorithm, UNSAT problems always require an exhaustive
exploration of a proof tree; branch ordering therefore does not affect the solving
time. We have thus focused on optimizing the process of finding solutions and
only extract training data from SAT problems.

To collect our training labels, we construct the complete proof tree for given
conjunctions of word equations, up to a certain depth. The tree enables us to
identify cases of multiple SAT pathways within the tree, and to identify situations
where one branch leads to a solution more quickly than other branches.

Each node v of the proof tree with multiple children is labelled based on two
criteria: the satisfiability status (SAT, UNSAT, or UNKNOWN) of the formula,
and the size of the proof sub-tree underneath each of the direct children. As-
sume that node v has n children, each of which has status SAT, UNSAT, or
UNKNOWN, respectively. If there is exactly one child of v, say the i’th child,
that is SAT, then the label of v is a list of integers (x1, . . . , xn) with xi = 1
and xj = 0 for j ̸= i. If multiple children are SAT, we examine the size of the
sub-tree underneath each of those children, and label all children with minimal
sub-trees with 1 in the list (x1, . . . , xn).

More formally, suppose a proof tree τ = (N,α,E, λ). The satisfiability sta-
tus σ(v) of a node v ∈ N is determined by:

σ(v) =



α(v) if α(v) ∈ {SAT,UNSAT,UNKNOWN}
SAT if there is u ∈ V with σ(u) = SAT and (v, u) ∈ E

UNKNOWN otherwise, if there is u ∈ V with σ(u) = UNKNOWN

and (v, u) ∈ E

UNSAT otherwise

(5)
The size ∆(v) of the sub-tree underneath a node v is defined by:

∆(v) = 1 +
∑

u∈N,(v,u)∈E

∆(u)
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Finally, the label Y v
n = (y1, ..., yn) of a node v with σ(v) = SAT and n

children v1, . . . , vn, where yi ∈ {0, 1}, is defined by:

yi =

{
1 if σ(vi) = SAT and ∆(vi) = minS

0 otherwise

S = {∆(vi) | σ(vi) = SAT}

When
∑n

i=1 yi > 1, we discard some children with label 1 until
∑n

i=1 yi = 1 to
make sure that the label for each split point is consistent.

4.4 Guidance for the Split Algorithm using the GNN Model

In Algorithm 1, we introduce five strategies for the orderBranches function im-
plementation, designed to evaluate the efficiency of deterministic versus stochas-
tic methods in branch ordering and to investigate the interplay between fixed
and variable branch ordering approaches:

– Fixed Order: Use a predetermined branch order, defined before execution.
In our experiments, we simply use the order in which the branches are dis-
played in Figure 2.

– Random Order: Reorder branches randomly.

– GNN (S1): Exclusively use the GNN model for branch ordering.

– GNN-fixed (S2): A balanced approach with a 50% chance of using the
GNN model and a 50% chance of using the fixed order.

– GNN-random (S3): Similar to S2, but with the alternative 50% chance
dedicated to random ordering.

5 Experimental Results

This section presents the benchmarks used for our experiments and details the
results with the different versions of our algorithm. It also provides a compre-
hensive comparison with other state-of-the-art solvers.

5.1 Implementation of DragonLi

DragonLi [2] is developed from scratch using Python 3.8 [49]. We train the mod-
els with PyTorch [42] and construct the GNNs using the Deep Graph Library

(DGL) [51]. For tracking and visualizing training experiments, mlflow [15] is em-
ployed. Proof trees and graph representations of word equations are stored in
JSON [43] format, while graphviz [21] is utilized for their tracking and visual-
ization.



14 P. Abdulla et al.

Table 1: Number of SAT (✓), UNSAT (×), UNKNOWN (∞), and evaluation
(Eval) problems in the four benchmarks

Benchmark 1 Benchmark 2 Benchmark 3 Benchmark 4
Total: 3000 Total: 21000 Total: 41000 Total: 2310

2000
Eval

20000
Eval

40000
Eval

1855
Eval

✓ × ∞ ✓ × ∞ ✓ × ∞ ✓ × ∞
1997 0 3 1000 1293 0 18707 1000 1449 1137 37414 1000 1673 16 166 455

5.2 Benchmarks Selection

We consider two kinds of benchmarks: benchmarks that are artificially gen-
erated based on the benchmarks used to evaluate the solver Woorpje [19], as
well as benchmarks extracted from the non-incremental QF S, QF SLIA, and
QF SNLIA track of the SMT-LIB benchmarks [1]. We summarize the bench-
marks as following:

– Benchmark 1 is generated by the mechanism used in Woorpje track I.
Given finite sets of letters C and variables V , we construct a string s with
maximum length of k by randomly concatenating selected letters from C.
We then form a word equation s = s and repeatedly replace substrings in s
with the concatenation of between 1 and 5 fresh variables. This procedure
guarantees that the constructed word equation is SAT.

– Benchmark 2 is generated by the mechanism used in Woorpje track III. It
first generates a word equation using the following definition:

XnaXnbXn−1bXn−2 · · · bX1 =

aXnXn−1Xn−1bXn−2Xn−2b · · · bX1X1baa (6)

where X1, ..., Xn are variables and a and b are letters. We then generate a
word equation using the mechanism for Benchmark 1, and replace letters b in
(6) randomly with the left-hand side or the right-hand side of that equation.

– Benchmark 3 is generated by conjoining multiple word equations that were
randomly generated using the mechanism described in Benchmark 1. This
procedure mainly produces benchmarks that are UNSAT.

– Benchmark 4 is extracted from benchmarks from the non-incremental
QF S, QF SLIA, and QF SNLIA tracks of SMT-LIB. We obtain word equa-
tions by removing length constraints, regular expressions, and unsupported
Boolean operators, which are not considered in this paper. As a result, bench-
marks after transformation can be SAT even if the original SMT-LIB bench-
marks were UNSAT.

Table 1 presents the number of problems in each benchmark. Benchmark
4 originates from a collection of 100805 SMT-LIB problems; after transforma-
tion, we obtain 2310 problems. For evaluation, we selected hold-out sets of 1000
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(Benchmarks 1–3) and 455 (Benchmark 4) problems were selected uniformly at
random; those sets were exclusively used for evaluation, not for training or for
tuning hyper-parameters. All benchmarks, as well as our implementation and
chosen hyper-parameters are available on Zenodo [3].

We then applied the split algorithm (Algorithm 1) to all benchmarks with
the fixed reordering strategy, to determine the number of SAT, UNSAT and
UNKNOWN problems. After the dispatch phase, we only retained SAT problems
for the construction of the training dataset.

5.3 Experimental Settings

DragonLi was parametrized with values lBT2 = 500, lstepBT2 = 250, lBT3 = 20
for Algorithm 1. In addition, we chose a hidden layer of size 128 for all neural
networks, and used a two message-passing layer (i.e. t = 2 in Equation 1) for the
GNN. Each problem in the benchmarks is evaluated on a computer equipped
with two Intel Xeon E5 2630 v4 at 2.20 GHz/core and 128GB memory. The
GNNs are trained on A100 GPUs. We measured the number of solved problems
and the average solving time (in seconds), with timeout of 300 seconds for each
proof attempt.

5.4 Comparison with Other Solvers

In Table 2, we evaluate three versions of our algorithm based on their imple-
mentation of the orderRules function: the fixed, random, and GNN-guided order
versions (listed in Section 4.4). The performance of the GNN-guided DragonLi
(row GNN in Table 2) for each benchmark is selected from the best results out
of 45 experiments (see Table 3). These experiments use different combinations of
five graph representations, three backtrack strategies, and three GNN guidance
strategies, as shown in bold text in Table 3. We compare the results with those
of five other solvers: Z3 (v4.12.2) [39], Z3-Noodler (v1.1.0) [17], cvc5 (v1.0.8) [10],
Ostrich (v1.3) [16], and Woopje (v0.2) [19].

The primary metric is the number of solved problems. DragonLi outperforms
all other solvers on SAT problems in benchmark 2. Notably, the GNN-based
DragonLi solves the highest number of SAT problems. For the conjunction of
multiple word equations (benchmark 3 and 4), DragonLi’s performance is com-
parable to the other solvers. The order of processing word equations is crucial for
those problems; currently, our solver uses only a predefined sequence, indicating
significant potential for improvement. A limitation of DragonLi is determining
UNSAT cases, as it requires an exhaustive check of all nodes in the proof tree.

In terms of average solving time for solved problems, GNN-based DragonLi
does not hold an advantage. This is mainly due to the overhead associated with
encoding equations into a graph at each split point and invoking GNNs. Fur-
thermore, DragonLi is written in Python and not particularly optimized at this
point, so that there is ample room for improvement in future efforts.

The measurement of the average number of splits in solved problems is used
to gain insight into the efficiency of the different versions of our algorithm. For
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Table 2: Evaluation on three metrics for different solvers. The labels SAT, UNS,
UNI, CS, and CU are abbreviation of SAT, UNSAT, unique solved, commonly
solved SAT, and commonly solved UNSAT, respectively. The labels Fixed, Ran-
dom, and GNN are the three variations of DragonLi in Section 4.4. Entries
marked “-” do not apply. Values less than 0.1 are rounded to 0.1. GNN rows for
benchmarks 1-4 share the configuration (BT2, S1, G5).

Bench Solver
Number of solved

problems
Average

solving time (split numbet)
SAT UNS UNI CS CU SAT UNS CS CU

1
(1000
SAT)

Fixed 999 - 0

777 0

4.1
(182.0)

- (-)
4.0

(169.0)
- (-)

Random 996 - 0
4.2

(349.6)
- (-)

4.1
(269.8)

- (-)

GNN 995 - 0
7.6

(215.7)
- (-)

7.0
(162.3)

- (-)

cvc5 1000 - 0 0.1 (-) - (-) 0.1 (-) - (-)
Ostrich 918 - 0 20.4 (-) - (-) 19.6 (-) - (-)
Woorpje 967 - 0 1.6 (-) - (-) 0.5 (-) - (-)

Z3 902 - 0 3.4 (-) - (-) 2.4 (-) - (-)
Z3-Noodler 935 - 0 1.9 (-) - (-) 1.1 (-) - (-)

2
(1000
in

total)

Fixed 33 0 10

1 0

13.2
(1115.2)

- (-) 4.8 (7) - (-)

Random 41 0 6
11.7

(3879.5)
- (-) 4.2 (60) - (-)

GNN 71 0 27
46.0

(1813.5)
- (-) 5.1 (5) - (-)

cvc5 4 2 4 2.0 (-) 0.1 (-) 0.1 (-) - (-)
Ostrich 14 43 44 40.7 (-) 31.8 (-) 2.5 (-) - (-)
Woorpje 23 0 2 38.3 (-) - (-) 0.1 (-) - (-)

Z3 6 0 2 0.1 (-) - (-) 4.2 (-) - (-)
Z3-Noodler 19 0 0 45.8 (-) - (-) 4.2 (-) - (-)

3
(1000
in

total)

Fixed 32 79 0

23 50

5.2
(1946.2)

65.8
(4227.0)

3.6
(57.0)

38.3
(796.6)

Random 32 79 0
9.5

(3861.8)
65.0

(4227.0)
3.8

(61.7)
38.5

(796.6)

GNN 32 65 0
214.3

(1471.2)
1471.2
(1471.2)

4.6
(63.7)

84.0
(796.6)

cvc5 32 943 2 0.1 (-) 0.3 (-) 0.1 (-) 0.3 (-)
Ostrich 27 926 0 5.8 (-) 4.7 (-) 4.6 (-) 4.5 (-)
Woorpje 34 723 1 12.4 (-) 12.3 (-) 0.1 (-) 23.2 (-)

Z3 26 953 10 5.6 (-) 0.5 (-) 4.7 (-) 0.1 (-)
Z3-Noodler 28 926 0 22.7 (-) 0.3 (-) 8.9 (-) 0.1 (-)

4
(455
in

total)

Fixed 416 6 0

403 2

5.1
(105.5)

17.7
(17119.5)

5.1
(51.0)

5.0
(246)

Random 415 6 0
4.9

(61.3)
17.9

(17119.5)
4.9

(38.1)
4.4

(246)

GNN 418 5 0
5.5

(118.3)
31.8

(5019.6)
5.3

(49.0)
8.8

(246)
cvc5 406 34 0 0.1 (-) 0.1 (-) 0.1 (-) 0.1 (-)

Ostrich 406 6 0 1.4 (-) 1.2 (-) 1.4 (-) 1.2 (-)
Woorpje 420 2 0 0.2 (-) 3.6 (-) 0.2 (-) 3.6 (-)

Z3 420 10 0 0.1 (-) 0.1 (-) 0.1 (-) 0.1 (-)
Z3-Noodler 420 35 1 0.1 (-) 0.1 (-) 0.1 (-) 0.1 (-)
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Table 3: Detailed results for number of solved problems of DragonLi in terms
of five graph representations (G1 to G5 represent Graph 1 to 5 in Section 4.1),
three strategies to apply GNN back to the algorithm (S1, S2, S3 in Section 4.4),
and three backtracking strategies (BT1, BT2, BT3 in Section 3.3). The column
GT denotes graph type.

GT
Benchmark 1 Benchmark 2

BT1 BT2 BT3 BT1 BT2 BT3

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

G1 991 1000 996 997 999 999 584 627 624 57 48 44 53 45 40 3 3 3

G2 998 1000 1000 998 1000 998 584 627 624 49 46 41 53 40 50 3 3 3

G3 997 1000 998 998 1000 999 584 627 624 53 43 49 65 46 55 3 3 3

G4 985 999 997 984 999 995 584 627 624 65 52 38 59 54 44 3 3 3

G5 995 1000 999 995 1000 995 584 627 624 64 46 44 71 54 50 3 3 3

GT
Benchmark 3 Benchmark 4

BT1 BT2 BT3 BT1 BT2 BT3

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

G1 32 32 31 32 32 32 14 16 16 413 415 413 417 417 416 400 404 402

G2 34 32 32 34 32 34 13 16 16 416 416 416 418 418 417 400 402 403

G3 32 32 32 31 32 33 13 16 16 416 416 417 418 417 415 400 402 404

G4 35 32 32 34 32 32 14 16 16 414 413 415 417 417 416 400 403 403

G5 31 31 31 32 31 32 14 16 16 415 416 414 418 417 416 400 402 402

benchmark 1 and 2, the GNN-guided version outperforms the others on the
commonly solved problems. However, for benchmarks 3 and 4, the GNN-guided
version does not show advantages. This is for the same reason mentioned in the
metric of the number of solved problems; namely, the performance is also influ-
enced by the order of processing equations when dealing with the conjunction
of multiple word equations.

We summarize the experimental results compared with some of the leading
string solvers as follows:

1. DragonLi shows better or comparable performance on SAT problems but
is limited on UNSAT problems. This occurs because the split algorithm
concludes SAT upon finding one SAT node, but can conclude UNSAT only
after exhaustively exploring the proof tree. In contrast, other solvers may
invest more time in proving UNSAT cases, for instance by reasoning about
string length or Parikh vectors.

2. DragonLi performs better than other solvers on single word equations (e.g.,
benchmark 2) and comparably on conjunctions of multiple word equations.
This performance difference is because the initial choice of word equation for
splitting is crucial for the split algorithm, and this aspect is not optimized
currently.
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3. Incorporating GNN guidance into the proof tree search enhances the perfor-
mance of the pure split algorithm for SAT problems, but currently does not
lead to an improvement for UNSAT problems.

5.5 Ablation Study

Table 3 displays the number of problems solved in 45 experiments across all
benchmarks using the GNN-guided version.

In terms of backtrack strategies, BT1 performs a pure depth-first search, but
it already has good performance. BT2 performs a depth-first search controlled by
parameters lBT2 and lstepBT2

, and in many cases, it delivers the best performance.
BT3 conducts a systematic search on the proof tree, which is complete for prov-
ing problems SAT, but turns out to be relatively inefficient in the experiments
and solves the fewest problems given a fixed timeout. This indicates that more
sophisticated search strategies may lead to even better performance.

In terms of the guiding strategies (S1, S2, S3), using the GNN alone (S1) to
guide the branch order is better than combining it with predefined and random
orders (S2 and S3) in most cases. This indicates that the GNN model success-
fully learns useful patterns at each split point and can be used as a stand-alone
heuristic for branching.

In terms of the five graph representations, Graph 1 has the simplest structure,
which represents the syntactic information of the word equations and thus incurs
the least overhead when we call the model at each split point. This yields av-
erage performance compared to other graph representations. The performances
of Graph 2 are weaker than others; this is probably due to the extra edges not
providing any benefits for prediction, but leading to additional computational
overhead. Graphs 3 and 4 emphasize the relationships between terminals and
variables, respectively, thus the performance is biased by individual problems.
Graph 5 considers the relationships for both terminals and variables, thus it
has bigger overhead than Graphs 1, 3, and 4, but it offers relatively good perfor-
mance. This shows that representing semantic information of the word equations
well in graphs helps the model to learn important patterns. In summary, the set-
ting (BT2, S1, Graph5) performs the best.

6 Related Work

There are many techniques within solvers supporting word equations, as well as
in stand-alone word equation solvers. For instance, the SMT solvers Norn [5] and
TRAU [6] introduce several improvements on the inference rules [4], including
length-guided splitting of equalities and a more efficient way to handle disequal-
ities. The stand-alone word equation solver Woorpje [19] reformulates the word
equation problem as a reachability problem for nondeterministic finite automata,
then encodes it as a propositional satisfiability problem which can be handled
by SAT solvers. In [20], the authors propose a transformation system that ex-
tends the Nielsen transformation [34] to work with linear length constraints.
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This transformation system can be integrated into existing string solvers such
as Z3STR3 [14], Z3SEQ [39], and CVC4 [11], thereby advancing the efficiency
of word equation resolution.

GNNs excel at analyzing the graph-like structures of logic formulae, offering
a complementary approach to formal verification. FormulaNet [50] is an early
study guiding the premise selection for Automated Theorem Provers (ATPs). It
uses MP-GNNs [24] to process the graph representation of the formulae in the
proof trace extracted from HOL Light [26]. With more studies [29,41,18] explor-
ing this path, this trend quickly expands to related fields. For instance, for SAT
solvers [52,33], NeuroSAT [45,46] predicts the probability of variables appear-
ing in unsat cores to guide the variable branching decisions for Conflict-Driven
Clause Learning (CDCL) [37]. Moreover, GNNs have been combined with various
formal verification techniques, such as scheduling SMT solvers [28], loop invari-
ant reasoning [47,48], or guiding Constraint Horn Clause (CHC) solvers [7,35,27].
They provide the empirical foundations for designing the learning task in Sec-
tion 4, such as the graph representation of word equations and forming the
learning task in split points.

7 Conclusion and Future Work

This study introduces a GNN-guided split algorithm for solving word equations,
along with five graph representations to enhance branch ordering through a
multi-classification task at each split point of the proof tree. We developed our
solver from scratch instead of modifying a state-of-the-art SMT solver. This de-
cision prevents the confounding influences of pre-existing optimizations in state-
of-the-art SMT solvers, allowing us to isolate and evaluate the specific impact
of GNN guidance more effectively.

We investigate various configurations, including graph representations, back-
track strategies, and the conditions for employing GNN-guided branches, aiming
to analyze the behaviors of the algorithm across different settings.

The evaluation tables reveal that while the split algorithm effectively solves
single word equations, it does not demonstrate marked improvements for mul-
tiple conjunctive word equations relative to other solvers. This discrepancy is
attributed to the significance of the processing order for conjunctive word equa-
tions, where our current solver employs a predefined order. It is possible to
make use of a GNN to compute the best equation to start with. However, this
involves ranking a list of elements with variable lengths, rather than performing
a fixed-category classification task, and requires completely different training
for this specific task. Consequently, as future work, we aim to investigate both
deterministic and stochastic strategies to optimize the ordering of conjunctive
word equations for the split algorithm. Our algorithm is also limited in handling
UNSAT problems because it can only conclude UNSAT by exhausting the proof
tree. This can be improved in future work.
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