Class

ap.theories.bitvectors

GaloisField

Related Doc: package bitvectors

Permalink

case class GaloisField(p: IdealInt) extends ModRing with Field with Product with Serializable

Galois fields of cardinality p, for some prime number p.

Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. GaloisField
  2. Serializable
  3. Serializable
  4. Product
  5. Equals
  6. Field
  7. RingWithDivision
  8. ModRing
  9. RingWithIntConversions
  10. CommutativeRing
  11. CommutativePseudoRing
  12. RingWithOrder
  13. Ring
  14. PseudoRing
  15. AnyRef
  16. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new GaloisField(p: IdealInt)

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def additiveGroup: Group with Abelian with SymbolicTimes

    Permalink

    Addition gives rise to an Abelian group

    Addition gives rise to an Abelian group

    Definition Classes
    PseudoRing
  5. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  6. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @HotSpotIntrinsicCandidate() @throws( ... )
  7. def div(s: ITerm, t: ITerm): ITerm

    Permalink

    Division operation

    Division operation

    Definition Classes
    GaloisFieldRingWithDivision
  8. val dom: ModSort

    Permalink

    Domain of the ring

    Domain of the ring

    Definition Classes
    ModRingPseudoRing
  9. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  10. def geq(s: ITerm, t: ITerm): IFormula

    Permalink

    Greater-than-or-equal operator

    Greater-than-or-equal operator

    Definition Classes
    RingWithOrder
  11. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
    Annotations
    @HotSpotIntrinsicCandidate()
  12. def gt(s: ITerm, t: ITerm): IFormula

    Permalink

    Greater-than operator

    Greater-than operator

    Definition Classes
    RingWithOrder
  13. def int2ring(s: ITerm): ITerm

    Permalink

    Conversion of an integer term to a ring term

    Conversion of an integer term to a ring term

    Definition Classes
    ModRingPseudoRing
  14. def inverse(s: ITerm): ITerm

    Permalink
    Definition Classes
    Field
  15. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  16. def isInt(s: ITerm): IFormula

    Permalink

    Test whether a ring element represents an integer number.

    Test whether a ring element represents an integer number.

    Definition Classes
    ModRingRingWithIntConversions
  17. def leq(s: ITerm, t: ITerm): IFormula

    Permalink

    Less-than-or-equal operator

    Less-than-or-equal operator

    Definition Classes
    ModRingRingWithOrder
  18. val lower: IdealInt

    Permalink
    Definition Classes
    ModRing
  19. def lt(s: ITerm, t: ITerm): IFormula

    Permalink

    Less-than operator

    Less-than operator

    Definition Classes
    ModRingRingWithOrder
  20. def minus(s: ITerm): ITerm

    Permalink

    Additive inverses

    Additive inverses

    Definition Classes
    ModRingPseudoRing
  21. def minus(s: ITerm, t: ITerm): ITerm

    Permalink

    Difference between two terms

    Difference between two terms

    Definition Classes
    PseudoRing
  22. def mul(s: ITerm, t: ITerm): ITerm

    Permalink

    Ring multiplication

    Ring multiplication

    Definition Classes
    ModRingPseudoRing
  23. def multiplicativeGroup: Group with Abelian

    Permalink

    Non-zero elements now give rise to an Abelian group

    Non-zero elements now give rise to an Abelian group

    Definition Classes
    Field
  24. def multiplicativeMonoid: Monoid with Abelian

    Permalink

    Multiplication gives rise to an Abelian monoid

    Multiplication gives rise to an Abelian monoid

    Definition Classes
    CommutativeRingRing
  25. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  26. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @HotSpotIntrinsicCandidate()
  27. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @HotSpotIntrinsicCandidate()
  28. val one: ITerm

    Permalink

    The one element of this ring

    The one element of this ring

    Definition Classes
    ModRingPseudoRing
  29. val p: IdealInt

    Permalink
  30. def plus(s: ITerm, t: ITerm): ITerm

    Permalink

    Ring addition

    Ring addition

    Definition Classes
    ModRingPseudoRing
  31. def product(terms: ITerm*): ITerm

    Permalink

    N-ary sums

    N-ary sums

    Definition Classes
    PseudoRing
  32. def ring2int(s: ITerm): ITerm

    Permalink

    Conversion of a ring term to an integer term.

    Conversion of a ring term to an integer term. This should have the property that isInt(s) <=> int2Ring(ring2Int(s)) === s.

    Definition Classes
    ModRingRingWithIntConversions
  33. def summation(terms: ITerm*): ITerm

    Permalink

    N-ary sums

    N-ary sums

    Definition Classes
    PseudoRing
  34. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  35. def times(num: IdealInt, s: ITerm): ITerm

    Permalink

    num * s

    num * s

    Definition Classes
    PseudoRing
  36. def toString(): String

    Permalink
    Definition Classes
    PseudoRing → AnyRef → Any
  37. val upper: IdealInt

    Permalink
    Definition Classes
    ModRing
  38. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  39. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  40. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  41. val zero: ITerm

    Permalink

    The zero element of this ring

    The zero element of this ring

    Definition Classes
    ModRingPseudoRing

Deprecated Value Members

  1. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @Deprecated @deprecated @throws( classOf[java.lang.Throwable] )
    Deprecated

    (Since version ) see corresponding Javadoc for more information.

Inherited from Serializable

Inherited from Serializable

Inherited from Product

Inherited from Equals

Inherited from Field

Inherited from RingWithDivision

Inherited from ModRing

Inherited from RingWithIntConversions

Inherited from CommutativeRing

Inherited from CommutativePseudoRing

Inherited from RingWithOrder

Inherited from Ring

Inherited from PseudoRing

Inherited from AnyRef

Inherited from Any

Ungrouped