
OSTRICH Version 1.4
Matthew Hague∗, Denghang Hu†, Anthony W. Lin‡§, Oliver Markgraf‡, Philipp Rümmer¶∥, Zhilin Wu†

∗Royal Holloway, University of London, UK
†Key Laboratory of System Software (Chinese Academy of Sciences) and

State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China
‡Technical University of Kaiserslautern, Germany

§Max-Planck Institute for Software Systems, Germany
¶University of Regensburg, Germany

∥Uppsala University, Sweden

Abstract—This paper gives a high-level overview of the
string solver OSTRICH version 1.4, a solver entering SMT-
COMP 2024. For more details and theoretical results we
refer to the full version of the paper [4] and to the website
https://github.com/uuverifiers/ostrich.

I. OVERVIEW

OSTRICH is a string solver designed for solving constraints
that occur during program analysis. OSTRICH is built on
top of the SMT solver Princess [6] and uses the BRICS
Automata library [1] to handle regular expressions inside the
string formulas. OSTRICH accepts constraints written using
the SMT-LIB theory of strings and supports most operators of
the theory. In addition, OSTRICH can handle transducers and
the string reverse operation, regular expressions that include
capture groups, lazy quantifiers, and anchors. OSTRICH also
allows users to add their own string functions, as long as they
provide an implementation of pre-image computation [4].

In SMT-COMP 2024, OSTRICH will apply four algorithms
for solving string constraints. The new one (RCP) is described
below. The other three (BW-Str, ADT-Str and CE-Str) were
already used in OSTRICH in SMT-COMP 2023 and CE-
Str is updated this year; difference in CE-Str is detailed
below. For more details, we refer the reader to the tool’s
description of OSTRICH 1.3 at https://smt-comp.github.io/
2023/system-descriptions/OSTRICH.pdf. Loosely speaking,
BW-Str applies Backward Propagation in combination with
Nielsen’s transformation and length reasoning, while ADT-Str
uses a decision procedure for the theory of Algebraic Data
Types (ADT) with size catamorphism.

RCP: REGULAR CONSTRAINT PROPAGATION

Regular Constraint Propagation (RCP) is the newest algo-
rithm that has been implemented in OSTRICH, based on a
subset of proof rules in our paper [2]. The main goal of RCP is
to prove unsatisfiability of the input constraint. The algorithm
handles equational part with string functions like concatenation,
replace, and replaceall, and regular constraints. Other string
functions (e.g. reverse, one-way and two-way transducers) are
permitted, so long as pre/post image of regular constraints
under these functions are provided, which need not be exact,
but at least overapproximate the true pre/post image. Each

such formula is first converted to the following normal form
by adding variables:

S ::= x = f(x̄) | x ∈ L | S ∧ S

where f denotes any of the aforementioned n-ary string
function. For example, the constraint xy = yx∧x ∈ a∗ba∗∧y ∈
a∗ca∗ will be converted to the following formula in normal
form: z = f(x, y) ∧ z = f(y, x) ∧ x ∈ a∗ba∗ ∧ y ∈ a∗ca∗,
where f(x, y) = x.y

The main idea behind RCP is to propagate regular constraints
of the form x ∈ L to other string variables through forward
and backward propagations (i.e. post/post image computation
of the functions). In particular, these realize the following three
proof rules. The first is the forward propagation [Fwd-Prop]
rule:

Γ, x ∈ e, x = f(x̄), x1 ∈ e1, . . . , xn ∈ en
CF

Γ, x1 ∈ e1 . . . , xn ∈ en, x = f(x̄)

where the side condition CF denotes that L(e) =
f(L(e1), . . . , L(en)). Here “forward” is to be interpreted as
post image, i.e., from left to right. The second rule is backward
propagation [Bwd-Prop]:

{Γ, x ∈ e, x = f(x̄), x1 ∈ ei1, . . . , xn ∈ ein}ki=1 CB
Γ, x ∈ e, x = f(x̄)

where the side condition CB denotes that f−1(L(e)) =⋃k
i=1(L(e

i
1)× · · · ×L(ein)). Backward means the direction of

the pre image of the function f . Finally, we have the [Close]
rule:

if L(e1) ∩ · · · ∩ L(en) = ∅
Γ, x ∈ e1, . . . , x ∈ en

which allows us deduce unsatisfiability when the regular
constraints on a variable are contradictory. Using our running
example, we apply [Fwd-Prop] on the regular constraints
x ∈ a∗ba∗ ∧ y ∈ a∗ca∗ twice through z = f(x, y)
and z = f(y, x) and infer, respectively, regular constraints
z ∈ a∗ba∗.a∗ca∗ and z ∈ a∗ca∗a∗ba∗. These final two regular
constraints allow us to conclude unsatisfiability of the formula
using [Close].

https://smt-comp.github.io/2023/system-descriptions/OSTRICH.pdf
https://smt-comp.github.io/2023/system-descriptions/OSTRICH.pdf

CE-STR: COST-ENRICHED SOLVER

In principle, the main algorithm of CE-Str (based on
[3]) amounts to, as in OSTRICH 1.3, using the backward
propagation procedure of BW-Str but changing the automata
representation to cost-enriched finite automata (CEFAs). Nev-
ertheless, various optimizations have been implemented in
OSTRICH 1.4 to improve the performance, including:

• optimizations for reducing the sizes of CEFAs,
• optimizations for regexes with the nesting of counting

operators,
• optimizations for regexes with the nesting of counting

operators and a complement operator,
• optimizations for generating models of string constraints

out of models of LIA formulas.
The transition of a CEFA is a tuple (q, a, q′, v⃗), where q, q′

are states of the CEFA, a is a character, and v⃗ is a vector
of integer that represents the cost function on the transition.
For example, the transition (q, a, q′, (1)) means the CEFA can
transit from state q to state q′ with the register incremented by
1. We observe that the characters on transitions do not affect
the values of registers in the CEFA. Moreover, the cost function
0⃗ also does not affect the values of registers. Based on these
observations, we drop the characters after the intersection of
CEFAs and consider the cost function 0⃗ as the epsilon label.
In contrast, other cost functions are considered as non-epsilon
labels. The transition (q, a, q′, 0⃗) is changed to (q, q′, ϵ) and the
transition (q, a, q′, v⃗) is changed to (q, q′, v⃗). Determinization
and minimization for the transferred CEFA are then performed
to reduce the size[5].

The main idea of the optimizations for regexes with the
nesting of counting operators is illustrated by the constraint
x ∈ (a{1,1000}){1,2}. If we apply the naive unfolding as last
year, we will unfold a{1,1000} and obtain the constraint x ∈
(a(ε+ a+ aa+ · · ·+ a · · · a︸ ︷︷ ︸

999

)){1,2}. It is easy to observe that a

smarter way is to unfold {1,2}, instead of {1,1000}. If we do this,
then we get a constraint x ∈ (a{1,1000})(ε+ a{1,1000}), whose
size is much smaller, compared to x ∈ (a(ε+ a+ aa+ · · ·+
a · · · a︸ ︷︷ ︸
999

)){1,2}. To achieve this, we propose a score function

to evaluate the number of transitions and registers produced
by the unfolding of each counting operator and then unfold
the counting operator producing fewer transitions and registers
first.

We also propose two approximations of the complement
operation on the regex with counting operators, i.e., an under-
approximation and an over-approximation, and combine them
into a procedure that achieves a nice balance between efficiency
and precision. We compute an under-approximation of e by
replacing each occurrence of the counting operators in e1, say
e
{m,n}
2 or (e{n,∞}

2), by e∗2. Futhermore, for e = e1, we utilize
the CEFA constructed from e1, say Ae1 , to construct a CEFA
B of e so that L(B) is an over-approximation of L(e). Let
Ae1 = (R,Q,Σ, δ, I, F, α). The main idea of the construction
is explained as follows: If a string w is not accepted by Ae1 ,
then either there are no runs of Ae1 on w, or every run of

Ae1 on w stop at a non-final state or enter a final state but
do not satisfy the accepting condition α. We shall construct
a CEFA B that accepts when one of these situations occurs.
Then L(Ae1) ⊆ L(B), that is, B is an over-approximation of
e.

In last year’s submission, we generated models of string
constraints out of models of LIA formulas with registers as
free variables. However, this approach is not efficient enough.
This year, we would like to refine this process by using the LIA
formulas to obtain information about the number of occurrences
of transitions instead of just the values of registers and utilize
this information to guide the search process.

II. OSTRICH AT SMT-COMP 2024

We are submitting version 1.4 of OSTRICH in the single-
query track divisions QF_S, QF_SLIA, QF_SNIA. This
version is linked against Princess 2024-03-22 and the BRICS
automata library 1.11-8. The submitted version of OSTRICH
is configured to use the options

+quiet -portfolio=strings

Those options disable diagnostic output and enable the port-
folio consisting of regular constraint propagation (RCP), the
backward propagation-based solver (BW-Str), the ADT-based
solver (ADT-Str) and the cost-enriched solver (CE-Str).

REFERENCES

[1] Brics automaton. https://www.brics.dk/automaton/index.html, accessed:
2022-06-23

[2] Chen, T., Flores-Lamas, A., Hague, M., Han, Z., Hu, D., Kan, S., Lin,
A.W., Rümmer, P., Wu, Z.: Solving string constraints with regex-dependent
functions through transducers with priorities and variables. Proc. ACM
Program. Lang. 6(POPL), 1–31 (2022). https://doi.org/10.1145/3498707,
https://doi.org/10.1145/3498707

[3] Chen, T., Hague, M., He, J., Hu, D., Lin, A.W., Rümmer, P., Wu, Z.: A
decision procedure for path feasibility of string manipulating programs
with integer data type. In: Hung, D.V., Sokolsky, O. (eds.) Automated
Technology for Verification and Analysis - 18th International Symposium,
ATVA 2020, Hanoi, Vietnam, October 19-23, 2020, Proceedings. Lecture
Notes in Computer Science, vol. 12302, pp. 325–342. Springer (2020),
https://doi.org/10.1007/978-3-030-59152-6_18

[4] Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision procedures
for path feasibility of string-manipulating programs with complex oper-
ations. Proceedings of the ACM on Programming Languages 3(POPL),
1–30 (2019)

[5] Hu, D., Wu, Z.: String constraints with regex-counting and string-
length solved more efficiently. In: Hermanns, H., Sun, J., Bu, L. (eds.)
Dependable Software Engineering. Theories, Tools, and Applications. pp.
1–20. Springer Nature Singapore, Singapore (2024)

[6] Rümmer, P.: A constraint sequent calculus for first-order logic with linear
integer arithmetic. In: International Conference on Logic for Programming
Artificial Intelligence and Reasoning. pp. 274–289. Springer (2008)

https://www.brics.dk/automaton/index.html
https://doi.org/10.1145/3498707
https://doi.org/10.1007/978-3-030-59152-6_18

	Overview
	OSTRICH at SMT-COMP 2024
	References

