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1. Introduction

The KeY project [ABBT03] of the University of Karlsruhe and the Chalmers University
of Technology, Gothenburg has the goal to develop tools that enable formal specification
and verification of software, with the particular intention to make these tools as easy
to use as possible. A central part of this project is an (mostly) interactive prover
component, which is based on a sequent calculus for modal logics, and in particular for
a dynamic logic treating the programming language JavaCard [Sun02]. The calculus
rules of this prover are formulated as so-called taclets, which is a concept that has first
been described in [Hab00|. Taclets pose an intuitive and easy way to describe rules of
sequent calculi schematically, and at the same time they are especially suited to realize
rules that are to be applied interactively.

In [Hab00], taclets are introduced together with a method to construct for a given
taclet a proof obligation, which is a first-order formula that in a certain way represents
the meaning of a taclet. These formulas are used to reduce the problem of soundness of
the rule represented by a taclet to the problem of validity (of the proof obligation), and
pose a convenient way to maintain large sets of available calculus rules, still ensuring
the soundness of the calculus.

At the present time, within the KeY system no automated generation of proof obli-
gations for taclets is implemented. This has mainly two reasons:

e The definition of taclets and proof obligations in [Hab00]| is only performed for
first-order logic, and thus not (immediately) applicable to the situation in KeY,
where it is necessary to treat dynamic logic

e Taclets in the KeY system are implemented introducing a concept called schema
variables, which are variables that have a purely syntactic meaning, and that
can only occur within taclets (and not as part of a proof). In [Hab00], for this
purpose (first-order) object variables are used.

In this thesis, we will describe a construction analogous to the creation of proof
obligations for taclets in [Hab00], but suited for the realisation of taclets in KeY.

1.1. Proving the Soundness of Taclets

On a semantic level, by the soundness of a rule (r) for a given calculus K we mean
the impossibility to prove formulas not valid, by including applications of the rule
in proofs. To show that a given rule is sound, it is thus necessary to consider each
possible application of the rule that can emerge within a proof attempt of a formula
that is not valid, and ensure that the application of the rule cannot lead to a successful
continuation of the attempt.

Immediately referring to this definition to show the soundness of a rule is rather
inconvenient, as it contains at least two complex components:

e The definition directly refers to applications of the rule, which makes it necessary
to treat the semantics of a given (formal) description of the rule to furnish a proof
of its soundness
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e [t is necessary to cover all possible applications of the rule, i.e. one has to perform
some kind of induction over the structure of the circumstances, like the situation
of the proof, within which the rule can be applied.

It is therefore desirable to find a more convenient characterisation of the soundness
of rules. Because the soundness problem for taclets is usually undecidable (except
for taclets that treat propositional logics), it seems natural to formulate these proof
obligations, which guarantee the soundness of rules ¢, as a formula ¢p,, such that:

the formula ¢p, is valid <= ¢ is sound (1)

To make this construction useful, thereby the creation of formulas ¢}, for given taclets ¢
has to be computable. In any case, the formula ¢}, already represents the semantics
of the rule defined through a taclet ¢, therefore this transformation of the soundness
problem eliminates one of the two complicated parts we have mentioned. If it addi-
tionally is possible to formulate ¢y, as a formula within a “convenient” logic, at best
within the logic the considered calculus K treats itself, then also the second item is
handled.

A given construction procedure of proof obligations is only valuable, if it is possible to
show that equivalence (1) really holds for this procedure. The more important direction
of relation (1) is the one from left to right, and the aspect we will concentrate on most
of the time in this document. Knowing that this implication holds already guarantees
a calculus to stay sound, as long as only rules with valid proof obligations are added.

The other direction, being responsible for prohibiting proof obligations stronger than
necessary, thus “forbidding” even sound taclets, has a more practical meaning. There is
a trade-off between the simplicity of (building and proving) the proof obligation, and
the “extravagance” of rules that ought to be proved sound (provided that the rules are
sound). This issue, as well as aspects of completeness will not be treated in more detail
in this thesis.

Proving equivalence (1) has, however, a striking disadvantage: Namely, it needs
to refer to semantics, defined for the considered logic (to formulate a usable proof
obligation it may also be necessary to enrich this logic by further elements). As we
are most interested in the logic JavaCardDL, this semantics would at least subsume
the JavaCard language, and thus be rather complex, and also inflexible for considering
subsets and enhancements.

In this thesis, we will therefore pursue a concept slightly different. Instead of treating
the soundness problem using a semantic approach, we will concentrate on the formula-
tion of lemma rules, which are rules whose effect can be reproduced referring to already
existing rules. For a sound and complete calculus K, both notions are obviously equiva-
lent (and for a calculus that is sound, the rules that can be introduced are in particular
sound, too). Likewise, instead of formulating proof obligations whose walidity is of
interest, we are satisfied with the term derivability. Equivalence (1) then becomes

¢po is derivable in K <=t is reproducible in K (2)

It should be stressed, however, that for both ways of proving the soundness of the
taclet ¢ the actual proof obligations ¢}, are not necessarily different.



1.2. The Important Steps

Taclet ¢
Application a; of ¢ Proof obligation ¢p,

@ |

Proof H(a;) <———— Proof H(ypo)

Figure 1: Overview of our method

The second, purely syntactic approach has (beside others) the following advantages
for us:

e While not being completely independent from the underlying semantics (in some
situations we will need to assume the existence of certain rules, expressing spe-
cific properties of the semantics we rely on), this is indeed the case for certain
aspects. For example, the method to construct proof obligations that is described
in Sect. 4.4, which refers to first-order logic, can as well be applied to richer logics
(as dynamic logic), provided that the expressiveness of rules is not also enhanced
(i.e. with this restricted procedure we can’t reason about rules modifying specific
constructs of dynamic logic, not present within first-order logic, like programs)

o We will get a very “modular” proof of the implication from left to right in equa-
tion (2), that can easily and stepwise be extended upon introduction of new
features of the logic or the considered rules.

1.2. The Important Steps

For a taclet t whose soundness is to be proved, and referring to a calculus K that is
regarded as correct, we want to provide a construction mechanism for a formula ¢p, that
satisfies the direction from left to right of equivalence (2) from the previous section. In
Sect. 3, a uniform representation of taclets as a set of formulas by using schema variables
is defined. The derivation of the proof obligation from the rule (in this representation)
essentially consists of the replacement of schema variables with suitable skolem symbols.

To show that the implication (of equivalence (2)) holds, we follow the diagram of
figure 1:

1. We assume that a proof H(ype) of the proof obligation ¢y, exists, using the
calculus K (or a calculus enriched by a number of special rules, needed to deal
with the introduced skolem symbols); this is the “derivability”-premise of the
implication to be shown

2. We consider an arbitrary application a; of the rule ¢; as the rule is described
using schema variables, this means that we are given a tuple of replacements
(instantiations) for the schema variables (and the position of application, for
which we also define an appropriate schema variable type)
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1.3.

The proof H(ppe) of the proof obligation is transformed into a “proof” H(a;) of
the rule application a;, which means that from H (yp,) we derive a sequence of rule
applications in the calculus K (i.e. only using rules that are known to be sound,
and especially not using t), having the same effect as the rule application a;. The
most important part of this proof transformation is the replacement of the skolem
symbols introduced in ¢, by the schema variable instantiations of a;; for that,
we will have to define a number of substitution operators (see appendix A).

How to read the Thesis

In Section 2, some minor assumptions and definitions about the used logic Java-
CardDL are given; the section does however not contain a complete introduction
to JavaCardDL

Section 3 consists of an introduction to taclets, restricted to the features treated
in this thesis, and a definition of the operational semantics of taclets through
meaning formulas; furthermore, schema variables are defined, distinguishing vari-
ables sufficient for first-order logic (FOL), and supplementary variables necessary
for JavaCardDL. Section 3 is the only section dealing with taclets, later on only
meaning formulas of taclets turn up, which pose a more general representation of
rules

Section 4 is the central part of the document, in which first some basic tools are
supplied, and later the derivation of proof obligations from meaning formulas is
defined and verified. Like Section 3, Section 4 contains two parts, in which proof
obligations are introduced for first-order logic and for JavaCardDL respectively

Section 5 sketches some possibilities to extend the methods of Section 4 to cover
further kinds of rules and schema variables

In Appendix A, two kinds of substitutions (again corresponding to the treat-
ment of first-order logic and JavaCardDL respectively) are defined and discussed,
which are mainly used in Section 4.
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2.1. Introduction to JavaCardDL and Basic Notations

JavaCardDL is an instance of first-order dynamic logic for the programming language
JavaCard, which is essentially a subset of Java (see [Bec01, HKT00, GJSB00, Sun02]).
As central part of the KeY project [ABB*02, ABBT03], a prover has been implemented
based on a sequent calculus for JavaCardDL, that is used to reason about JavaCard
programs annotated with OCL constraints (these constraints are first translated to
JavaCardDL, see [OMGO01, Kel02]).

We only give a very short enumeration of properties of JavaCard and JavaCardDL
in this section, which are either not self-evident or unusual. Beside that, we refer to
the more extensive descriptions of JavaCardDL in [Bec01, ABBT03].

First we introduce an additional statement, which is added to JavaCard as part of
JavaCardDL to handle method calls:

e A statement method—frame is added, which is mainly responsible for catching
return-jumps, and which can optionally be equipped with a program variable to
store the result value of a return-call. The necessary rule for the Java grammar
(referring to [GJSBO00], Sect. 14.5) is:

Statement Without TrailingSubstatement:
method-frame ( Identifier,,, ) Block

If a statement return is executed, the innermost method—frame-statement
will complete abruptly. If this method—frame is furnished with a result vari-
able v, then additionally the result of return is assigned to v (this implies the
requirement that a result exists and is assignable to v). The target of a break-
or continue-statement that is executed within a method—frame must not lie
outside of the method—frame.!

e Eventually we will use the notation skip for the neutral statement, which is
preferred to a single semicolon for aesthetic reasons.

Within the whole thesis, we will (implicitly) refer to the following basic properties
of JavaCardDL:

e JavaCardDL subsumes first-order logic, i.e. provides the usual first-order quanti-
fiers as well as function and predicate symbols (which are regarded as rigid when
considering dynamic aspects). A vocabulary for JavaCardDL (at least) consists
of the following sets:

— A set Sort of sorts
— A set Func of function symbols
— A set Pred of predicate symbols

— A set PVar of program variables.

!This is a requirement that should most probably be enforced by static analysis.
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Furthermore we assume that the following two sets pose sufficient reservoirs of
symbols:

— The set Var of logical variables

— The set Label of Java labels.

The sets of JavaCardDL formulas and terms are denoted with For and Term
respectively. We also use the notation Syn for the set of all formulas, terms
and programs of JavaCardDL, as these elements can be treated alike in many
situations.

Beside the set Sort of sorts of a vocabulary, there is also a set Java Types, consisting
of all types the JavaCard language provides. Each Java type T € JavaTypes is
embedded in a sort Sy € Sort, and whenever a program element of type T' (e.g.
a program variable) occurs as a term outside of a program, the sort of this term
is S7. A detailed description of this topic can be found in [Sch02, BecO1].

There are two kinds of variables:

— Logical variables, which are rigid and are assigned a sort?

— Program variables, i.e. the variables the Java programming language pro-
vides, which are non-rigid and are assigned a Jawva type. A small selection
of aspects of program variables that is important for this thesis is discussed
in Sect. 2.3.

JavaCardDL provides three families of modal operators, namely

— the diamond operator ()¢, which is coloured with a JavaCard program «,
and essentially has the usual meaning as described in [HKT00]

— the box operator [ « |¢, which has the semantics

— the (simultaneous) update operator, as described in [ABB'03]
{Vl = tl,. A EES tl}(p.

Further kinds of modalities, like the trace-modalities introduced in [BS01], are
not considered in this thesis.

JavaCardDL contains an object-level substitution operator®
{z t}T

where z is a logical variable, ¢ is a term having the same sort as = and T either
is a term or a formula. Occurrences of z in T are in this case regarded as bound
by the substitution.

2We won’t use the common notation “object variables” to avoid confusion resulting from similar

names of Java classes.

3In the KéY system, this operator is only defined for formulas and terms used to define calculus rules.

10
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To conclude this section, we define some terms and notations that are used through-
out the document:

e We call two formulas, terms or programs @i, s of JavaCardDL equal modulo
bound renaming, written as

©1 =br ¥2,

if 1 and @9 can be identified using collision free bound renaming of

— Logical variables, which are bound by quantifiers and the object-level sub-
stitution operator

— Program variables, which are bound by local variable declarations within
Java programs (see Sect. 2.3 on this topic)

— Program labels, which are bound by the labelling of a statement within a
Java program. The scope of a label 1 is the statement that is labelled with
L.

e To distinguish object-level substitution operators (as introduced above) and meta-
level substitution, for the latter one we write

{ml/tl,...,xl/tl}go, a:{xl/tl,...,xl/tl}, U(QO)

where x1,...,x; are logical variables, and t¢1,...,¢; are terms having the same
sorts as x1,...,x; respectively. The application of o to terms and formulas is
defined as usual, see for example [Fit96]. We assume, however, that no implicit
resolution of collisions is performed.

Substitutions for other kinds of symbols than logical variables are defined in
appendix A.

2.2. Sorts

As used in the KeY project and introduced above, JavaCardDL is a sorted logic. While
the reasoning in this document does not depend on the exact definitions by which a
term is assigned its sort, or on the provided family Sort of sorts, we formulate the
following presumptions that will be used implicitly throughout the following sections:

e Replacing a sub-term s of a term or a formula T by a term s’, which has the same
sort as s, leads to a syntactically correct term or formula 7”. If T is a term, then
T’ has the same sort as T'

e Analogously, replacing a subexpression of a JavaCard expression « with an ex-
pression of the same Java type shall not alter the type of «

e Terms occurring as arguments of function and predicate symbols s within syn-
tactically correct terms or formulas shall exactly have the sorts demanded by the
signature of s.

“For terms of a real sub-sort, we assume that some kind of cast is implicitly inserted; actually this
method is also used in the KeY-system implicitly.

11
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2.3. Program Variables

By the term “program variable” (PV) we denote local/stack program variables and
class attributes, in particular not instance attributes or array elements of Java.> Hence
program variables are nullary, non-rigid symbols, which are assigned an arbitrary Java
type. Program variables need to be distinguished from logical variables, which are
rigid and are assigned a sort rather than a Java type. Like the occurrences of logical
variables,® occurrences of program variables can either be bound, which means declared
locally within a statement block (especially within a program block, belonging to a
modality), or free (both inside program blocks and within terms).

It is important that scopes of program variables differ from scopes of logical variables
(see [GJSBO0], Sect. 14.4.2), which leads to interesting kinds of collisions (example 2.4).
While the latter are always sub-formulas/subtrees of a formula below a quantifier or a
similar operator binding variables, the scope of a program variable covers all statements
that follow the declaration of the variable within the innermost statement block (in

special cases, e.g. parameter declarations of catch blocks, all statement of the following
block):

{j=0;inti;1i=0; }
Contrary to the current situation in the KeY-system, we define the scopes of program
variables in particular to be limited by program blocks; this means that in

(int i =1;)i=0

the two occurrences of i denote (conceptually) different variables. Renaming the first i
to j would not alter the meaning of the formula.

Definition (Statements respecting Scopes): We say that a statement or a list of state-
ments « respects scopes, if program variables declared in a cannot be observed outside
« (i.e. scopes of variables declared in « are completely contained by «). *

2.2 Erample: The statement o

int i;
does not respect scopes, as the scope of i is not limited to . On the other hand, the
statement 3

{ int i; }

obviously respects scopes. *

2.8 Lemma (Bound Renaming): Let 3 be a Java program fragment, and « be a statement

of 3 that respects scopes. If o/ is obtained from « by renaming bound program variables
or labels, and 3 from (3 by replacing an occurrence of o with o/, then 3 and (3’ are
equal modulo renaming. *

5These variables are logically treated as non-rigid mappings of the sort representing a Java class or
the array index type. It is however not necessary to spend much considerations on these mappings
in the scope of this document, mostly because occurrences cannot be bound.

5Within calculi, we will usually forbid the occurrence of free logical variables within top-level formulas
however.

12
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2.4 Ezrample: To demonstrate that Lem. 2.3 does not hold if o does not respect scopes, we
consider the program
int i;
i = 0;
Replacing the statement int i; with int j; leads to a program not equal modulo re-

naming. Similar problems arise if a statement is replaced with another statement that
does not respect scopes. *

13



3. Taclets

3. Taclets

3.1. Introduction

“Taclets” are rules for sequent calculi, formulated in a simple and intuitive syntax,
and originally developed by Elmar Habermalz as “Schematic Theory Specific Rules”
(STSR) in [Hab00]. Taclets are in particular appropriate for defining rules to be applied
interactively, but are not restricted to that purpose. Though at first taclets were
introduced for a first-order logic, in the KeY system taclets have been adapted to the
logic JavaCardDL. A description of taclets that applies to all (first-order) modal logics
is [BGH™03].

In this section, we will mostly give an introduction to the taclet language and its
semantics, specific for JavaCardDL. Beside that, we refer to the more complete de-
scriptions in [Hab00, BGH"03]. The other parts of this document are indeed mostly
independent from taclets, as we introduce a more general and simpler representation
of calculus rules, which (on a quite theoretic level) subsumes taclets.

For our purposes, a taclet t is given by an expression like

[if(Ti¢ F Aig)] [£find(A)] [ sameUpdateLevel ]
[ varcond(cy, ..., ) ]
[replacewith(B;)]| [add(l'aqa,1 + Aagan)]| [addprogvar(Vi)];

[replacewith(By)]| [add(lagar F Aadar)] [addprogvar(Vy) ]
in which

e the first line determines the situations and positions in which the taclet can be
applied; namely to sequents containing the formulas of the sequent I'yjs F Ajs,
and to formulas and terms A within these sequents

e the second line contains conditions to be fulfilled by instantiations of schema
variables contained in formulas and terms within the taclet (these are described
below)

e the k lines below are the “goal templates”, describing the effect an application of
the taclet has; namely k new goals (sequents) are created, in which A (at the posi-
tion of application) is replaced by B;, and to which the formulas of I'agqi = Aadd
are added respectively (the statement addprogvar is also described below).

A can either be a simple formula or term (and then each B; has to be a formula
or a term, too), or a sequent containing exactly one formula (then each B; has to
be a sequent); these two possibilities distinguish between taclets being applicable to
arbitrary sub-formulas or sub-terms (rewrite taclets), and taclets that can be applied
only to top-level formulas, either of the antecedent or the succedent of a sequent (lemma
taclets).

14
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3.1 Ezample: A very simple rewrite taclet t; is
find(1+1) replacewith(2)

and an application could be

=202 =
F =2l 1=q’ x

In this example, the taclet ¢ was applied to a term below a modality; while appli-
cations of this kind are correct for ¢, there is a number of other rules, in particular
taclets that handle equations, for which applications below modalities must not be al-
lowed. For this reason the keyword sameUpdateLevel can be added to the definition
of a taclet.”

Example 3.1 reveals that taclets as introduced so far are not very flexible, as they
merely perform replacements and additions of constant formulas and terms, and the
component still missing are variables that can be used in formulas and terms of the
taclet description. These variables are defined independently of taclets, and pose the
most important concept of this document:

3.2. Schema Variables

Schema variables, as they are defined in the following sections, were first introduced in
the KeY project as part of the implementation of a taclet application mechanism. A for-
mal description that mostly reflects the current implementation within the KeY system
can be found in [BGH™03.

To describe the subject of this document in a most abstract way, one could say that
we will deduce features of certain subsets of the set For, namely of sets that are defined
by formulas containing placeholders, to be replaced by different formulas, terms or other
syntactical constructs. Such sets/formulas arise as abstract descriptions of taclets, in
a way such that each possible application of a taclet is represented by one element of
the set, and such that an application is sound if (and only if) this element is valid. For
example, the formula

V. #p

denotes the set of all formulas, obtained by replacing the symbol #x by a variable y of
the logic, and #p by an arbitrary formula ¢ € For not containing free variables except
3. The used placeholders are called schema variables.

3.2 Definition (Schema Variable): Schema variables are symbols S = {#s; | i € I}, not oc-
curring in the vocabulary of the underlying logic, together with a map

p:S—-TxP

mapping each schema variable #s; onto a tuple p(#s;) = (T, P)

"In the KeéY system, this keyword furthermore enforces that updates occurring above the posi-
tion of application also occur in front of the formulas I'is - Ai¢, and are prepended to formu-
las Taga,k F Aaaa,x. The same exceptional behaviour is allowed for lemma rules. These special
cases are not discussed in this document.

15



3. Taclets

e T being the type of the schema variable (several types are defined later in this
section, e.g. for variables specifically representing terms or formulas); the kind
of the schema variable also determines its arity, which in most cases is however
zero. This type should not be mistaken for the sort that can be assigned to some
variables

e P being a tuple of attributes of the schema variable (which will be called properties
in this section); possible values of P depend on the type T of the schema variable,
e.g. for a term schema variable a property could determine the sort of terms
represented. *

Schema variables may occur within terms or formulas (or other syntactic constructs
a logic defines) at virtually any position. Therefore we do not distinguish between
different kinds of term-like structures (like formulas, terms, programs, etc.) in the next
definition, and rather denote the set of all such constructs within JavaCardDL by Syn.
We regard the elements of Syn as trees, in which nodes are coloured with symbols or
words (like elements of the vocabulary, logical variables or distinguished syntactical
elements of the logic like Vz.). From Syn, we derive a larger set Syngy, of constructs by
enriching the logic with schema variables.

3.8 Definition (Schema Variables in Formulas): Let S be a set of schema variables as in

3.4

Def. 3.2. The set Syngy = Syngy (S) of schematic syntactical elements is then defined
inductively to be the smallest set with

e For t € Syn, the tree t’ obtained by replacing arbitrary subtrees by elements of
Syngy is an element of Syngy; especially Syn C Syngy

e For #s € S a schema variable of arity k, and ¢1,...,t; € Syngy:
#S(tl,...,tk) S Synsv. *

The only schema variables that are not nullary we are going to introduce are variables
for contexts, both within formulas and programs.

Given a duplicate-free tuple S = (#s1, ..., #sy) of schema variables, a set R C Syn"
of possible instantiations of the schema variables is distinguished.? For that, the def-
inition of each schema variable type T contains conditions discriminating valid and
invalid instantiations (i.e. a recursive predicate over Syn™). The set R then contains
exactly those instantiations that are valid for each schema variable #s;.

Ezample (Validity of Schema Variables Instantiations): In the example

V. #p

from above, the instantiation ¢ = (v, ag) of the schema variables S = (#x, #p) could
be defined to be valid if (and only if) the following conditions are fulfilled:

8In most cases these instantiations simply pose replacements for the schema variables. Depending on
the type of the schema variable, in particular for variables not nullary, there can however be more
complex instantiation maps.
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3.2. Schema Variables

o #ux: aq is a (logical) variable
o #p: as is a formula, and FV (a2) C {a1}.

In this example, the instantiations would be used to replace the schema variables.

8.5 Remark: For instantiations of some schema variable types, it will be necessary to use a
slightly larger base set Syn.., O Syn, that differs from Syn by additional special symbols
axs. These symbols only occur within instantiations of the schema variable #s and not
under “normal” circumstances, simply to make reasoning easier. For example, a schema
variable #ct of type “context” will be instantiated with formulas that may contain a
distinguished propositional atom a4, marking a position within the formula, like

Va(p(e) V aga).

Upon instantiation (i.e. #ct is in a certain way replaced with such a formula) the
atom ax. is also replaced, and can thus be regarded as a formal parameter. *

Instantiation of Schema Variables
Given an instantiation tuple ¢ = (aq, ..., ay) for the tuple S = (#s1, ..., #s,) of schema
variables as introduced above, we define a map

A, @ Syngy — Syn

replacing schema variables within terms, formulas, etc. with their instantiations ¢. In
general, this map will be determined by

Jr(0m, A(r1), ., Au(r1)) if op = #sp, is a SV of type T
op(A(r1), -+ A1) otherwise

A (op(ry,...,m)) = { (3)

where for each type T the map Jr defines the exact procedure of replacement for
schema variables of type T (these maps are defined below). A, can roughly be seen as
a substitution, replacing schema variables with their instantiations.

In fact, most schema variables are nullary symbols (i.e. [ = 0, this depends on the
type T of the variable), thus for most variables op = #s,,,, equation (3) can be reduced
to

A(op) = A\ (#5m) = Jr(ap,) = const

and additionally for most nullary types we have Jr = id, thus
A (#8m) = .

To make instantiations of schema variables more treatable, we introduce the following
two conventions:

e As for substitutions, we will use the notation

v=A#s1/ar,... . #sk/ag}

instead of writing ¢ as the tuple ¢ = (o, ..., ax), implicitly referring to a given
tuple S = (#s1,...,#5n) of schema variables

17



3. Taclets

o We will identify the instantiation tuple ¢ and the corresponding instantiation map
A, and write

Within the next sections, different kinds of schema variables will be introduced,
based on Def. 3.2. Most of the following variables are (also) used to describe and define
taclets, some however occur only implicitly (within the taclet mechanism of KeY, and
within [Hab00]), e.g. the context schema variable, representing a position within a
formula, which are defined explicitly within this document to achieve a more uniform
representation.

We will always assume that a set S of schema variables is given, together with a single
formula ¢ € Syngy(S) in which the elements of S may occur (we do not require that
all variables of S actually turn up in ¢). For this situation, we describe the possible
types and properties the variables may have, the resulting ranges w.r.t. instantiation
and the instantiation maps Jr.

3.2.1. First-Order Schema Variables

Within this section, we ignore elements of JavaCardDL that exceed first-order logic,
which are in particular modal operators. For first-order logic, there are only four
types of schema variables, representing logical variables, terms, formulas and contexts.
To avoid problems that arise with the possibility of collisions, in the next definition
we make rather strict postulations regarding logical variables and the corresponding
schema variables, that could also be replaced with weaker (and more complicated)
conditions.

Variable Schema Variables (VariableSV)?

sort!? ‘ Instantiations allowed for this schema variable must have exactly this sort.
A VariableSV is to be instantiated with logical variables. No two VariableSV within
S may be instantiated with the same variable!!, and the instantiation of a VariableSV
must not occur bound within the instantiation of any other schema variable within
S.

JVariablesv (@) =

12

The variable #x in example 3.4 is supposed to be a VariableSV. To avoid collisions,
we do not want the instantiation of a VariableSV to occur in ¢ (i.e. except within
other schema variable instantiations); in Rem. 3.8, however, we will usually forbid the
occurrence of explicit logical variables (i.e. variables that are not schema variables)
within ¢ at all, so we skip further restrictions of VariableSV at this point.

9This is the name of the schema, variable type defined in this box.

10This is a property as in Def. 3.2.

"Within the KeY project, no restriction that strong is made for the instantiations of VariableSV, it
is however possible to reduce the more tolerant definition to this one by renaming bound variables,
see [Gie02].

12This is the instantiation map of this schema variable type.
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3.2. Schema Variables

3.6 Definition (Prefiz of a Schema Variable): By the prefiz P of a schema variable #s we
denote a property of #s being a set, determining objects that may occur (usually free)
within an instantiation of #s. In most cases, elements of prefixes will again be schema
variables. The exact meaning of a prefix property depends on the type of #s. *

3.7 Example: For the following schema variables #t for terms, we will define one prefix
property as a set of VariableSV whose instantiations are (exclusively) allowed to occur
freely within an instantiation of #t. In example 3.4, for a schema variable #p for
formulas we would analogously have

prefix,, = {#x}. *

The parts shaded in the following tables are needed to treat dynamic aspects of
JavaCardDL and are not used for FOL (explanations can be found in Sect. 3.2.2,
where schema variables for dynamic logic are defined). The properties are included in
the tables already at this point to provide complete descriptions.

Term Schema Variables (TermSV)

sort Instantiations allowed for this schema variable must have exactly this
sort.
prefix A subset of S. It determines the logical variables that may occur freely

within instantiations ¢ of this schema variable. The set may contain
e VariableSV whose particular instantiation may occur freely in ¢

o ContextSV #ct: If #ct is to be instantiated with the formula 1,
then the variables Bound(¢)) may occur freely in ¢ (ContextSV are
defined below, and most probably the reader should skip this item
for the time being)

(instantiations ¢ must not contain further free variables).

puPrefix | A subset of S that contains only PVariableSV. It determines those pro-
gram variables that may occur free within instantiations of this schema
variable. If this property has the value V, then the following program
variables are allowed to occur free:

e Variables that do not occur as instantiations of any PVariableSV
of S

e Variables that are instantiations of elements of V.

A TermSV is to be instantiated with terms.
JTermsv (@) = «

Formula Schema Variables (FormulaSV)

prefix (exactly as the prefix property of TermSV)
puPrefiz | (exactly as the pvPrefix property of TermSV)
A FormulaSV is to be instantiated with formulas.

JFormulasv (@) = «
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3.8 Remark: If a TermSV or FormulaSV #s occurs in the formula ¢ within the scope of an
operator (e.g. a quantifier) binding an explicit logical variable z, then it is not possible
to choose the prefix-property of #s such that = (but no other variable) is allowed to
occur freely within instantiations of #s. The is caused by the restriction that the
prefix-property of #s must not contain logical variables, but only VariableSV. Thus
the formula Vz.p(x) is usually not an instance of Va.#s, but it could be an instance of
V#x.#s, depending on the prefix of #s.

This is an arbitrary convention, and it would be easy to extend the definition of
prefixes to make explicit variables possible; it is, however, always possible to replace
a logical variable with a VariableSV without changing semantics, so a more general
definition would only be a minor improvement. Indeed we will usually require schematic
formulas not to contain logical variables at all (within the KeY project, this is also
required for all taclets). *

3.9 Example: We have a look at the meaning formula (i.e. an axiomatic representation,
which is defined in Sect. 3.3.2) of the rule (all left), for quantified variables of sort S:

o1 = VH#xH#p — {Fx #t}#p

The schema variables within this formula and their particular properties are (properties
not existing for a type are simply left out in the following table)

Symbol ‘ Type ‘ sort ‘ prefix

#x VariableSV | §

#p FormulaSV {#=zx}

#t TermSV S 0 *

As mentioned before, the following schema variable type is used to model the position
of an application of a rewrite rule within a term or formula in an explicit way. These
context schema wvariables are unary, and are instantiated with formulas in which a
special symbol marks the position at which the argument is to be substituted.

3.10 Ezample: A formula in which a context variable #ct occurs is
set(c)

where ¢ is a constant symbol. By instantiating #ct with the formula p(f(age,d))
(where a4 is the insertion symbol for the variable #ct) the instance

L(#ct(c)) = p(f(c,d))
is obtained. *

To define the instantiation of context variables, we employ f-substitutions, that are
introduced in appendix A.l. For the time being, the only notable difference between
f-substitutions and normal substitutions is that the former ones replace function and
predicate symbols instead of logical variables. For example 3.10, this would be

u#ct(c)) = {age/ctp(f(age, d) = p(f(c, d)).
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3.2. Schema Variables

Context Schema Variables (ContextSV)
sort The sort of the nullary function symbol ay.; (see below) that may occur
within ContextSV instantiations, or L.

unique | A boolean property, determining whether the symbol a4 (see below) has
to occur exactly once within the instantiation; this flag is mainly included
to make the following proofs easier, its meaning will be explained later in
detail.

SUL If this flag is true for a ContextSV #ct, then an instantiation ¢(#ct) of #ct
must not contain the symbol ay~ below any modalities (like updates and
box or diamond operators).

A ContextSV #ct is a unary symbol (#ct(t)), unlike the other schema variables we
have defined so far. It is to be instantiated with a closed formula %, which contains
a special constant or nullary predicate symbol ay.; (see Rem. 3.5). There are two
different cases:

e The sort property is not L (and the argument ¢ has to be a term!3): Then
a4t is a constant of this sort

e The sort property is L (and the argument ¢ has to be a formula): Then az.
is a nullary predicate symbol

If the unique-property is true, a4~ has to occur exactly once in ¢ (otherwise there
may by arbitrarily many occurrences, or none).

When instantiating #ct, the argument ¢ is substituted for ax., and the resulting
formula is substituted for #ct(t).

The set of variables bound within 1) above each occurrence of ay; (i.e. for multiple
occurrences the intersection of the sets for each occurrence) shall be denoted by
Bound(v). If ay. does not occur in ¢ at all, we define Bound(y)) = Var.
Joontextsv (@0, ) = {axct/r}a (using f-substitutions, as defined in appendix A.1)

3.11 Remark: We always assume that the schematic formula ¢ is syntactically correct for
every valid instantiation of the schema variables (the validity of an instantiation does
not depend on ¢, but on the types and properties of the particular schema variables).
Usually ¢ is also required to be closed for every valid instantiation. This implies that

e VariableSV occur only bound within ¢

e If a TermSV or FormulaSV #t contains a VariableSV #wv within its prefix, then
#wv is bound above each occurrence of #t

e If a TermSV or FormulaSV #t contains a ContextSV #ct within its prefix, then
#t occurs only within arguments of #ct. *

3.12 Ezample: We consider the meaning formula of a rule expressing the symmetry of a
relation p with argument sort S:

2 = #ct(p(#s, #1)) < #ct(p(#t, #s))

The schema variables within this formula are

13Following Def. 3.3, this is in fact an implication of Rem. 3.11 below.
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Symbol ‘ Type ‘ sort ‘ prefix ‘ unique
#ct ContextSV | L true
#s TermSV S {#ct}

#1 TermSV S {F#ct}

and valid instances/instantiations are (note that the instantiations in the last line would
not be allowed for #ct ¢ prefix, or #fct ¢ prefix,,)

P2 | #et | #s | #t
p(e,d) < p(d,c) Qfpct c d
(r Ap(c,d)) < (r Ap(d,c)) T A Qe c d

Vo Vy.p(z,y) < YeVy.p(y,z) | Ve.Vy.ape | « Y

If the unique-flag of #ct was false, the following instances would additionally be
correct (in the last line, the instantiations of #s and #t are irrelevant):

P2 | #ct | #s | #t
(p(c,d) Ap(c,d)) < (p(d,c) A p(d,c)) Qgter N\ Aot c |d
(Va.p(z,c) AVz.p(z,c)) « (Ye.p(c,z) AVe.p(c,z)) | Vr.age ANVT.apeq | ¢ | C
T r

*

3.13 Example: The following axiom, in which #s and #t are TermSV, represents the con-
gruence property of the equality =:

p3 = s = #t — (Fct(#s) o fhct(#1))
If Rem. 3.11 is supposed to hold for (3, then we must have
prefix ;. = prefix, =0

because @3 contains occurrences of #s and #t that do not lie within the scope of #ct
or any operator binding VariableSV. This means that instantiations of #s and #t are
not allowed to contain free variables. Otherwise, there would also be instances of 3
that are not closed. *

3.2.2. JavaCardDL Schema Variables

The following schema variable types are very specific to JavaCardDL, and while they
could of course be adapted to other languages as well, we are only aiming at treating
JavaCardDL as completely as feasible.

From the set of types that are used to handle the Java language (in the KeY project),
we concentrate on the most important ones, and make some assumptions about the
remaining types that are needed (and sufficient) to discuss the validity of schematic
formulas. Within the following pages, we use terminology of [GJSB00].

For the following type, we are referring to a set of “unused” program variables, de-
noted by PVar,, which basically contains all program variables not explicitly used in
any taclet (an exact definition of PVar, is provided in Sect. 4.6, as it does not make
any sense without a specific application).
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3.2. Schema Variables

Program Variable Schema Variables (PVariableSV)

java Type Instantiations of this PVariableSV must have exactly the given Java
type.

unusedOnly | Only the elements of PVar, are possible instantiations of this
PVariableSV, and the instantiation of this PVariableSV must not oc-
cur within the instantiation of any other schema variable, except when
this is explicitly allowed by a suitable pvPrefix-property (see below).

PVariableSV are to be instantiated with program variables (as is Sect. 2.3), that
may however be declared either globally or locally, corresponding to free and bound
logical variables. As with logical variables, we do not allow the instantiation of a
PVariableSV to occur bound within the instantiation of any other schema variable.

JPVariablesv (@) = &

The unusedOnly-property will be used for PVariableSV declared as new in a taclet
definition, see Sect. 3.3.1 below.

As for logical variables, we introduce prefixes for PVariableSV, and therefore add the
following properties to TermSV and FormulaSV:

Term Schema Variables (TermSV)

pvPrefix | A subset of S that contains only PVariableSV. It determines those pro-
gram variables that may occur free within instantiations of this schema
variable. If this property has the value V, then the following program
variables are allowed to occur free:

e Variables that do not occur as instantiations of any PVariableSV
of S'4

e Variables that are instantiations of elements of V.

Formula Schema Variables (FormulaSV)
pvPrefix ‘ (exactly as the pvPrefix property of TermSV)

We do not treat ContextSV as “producers” of program variables that may occur
within instantiations, i.e. contrary to the prefix-property for logical variables ContextSV
are not allowed to be elements of the pvPrefix-set. This is in fact no restriction, as
we have defined that the scopes of program variables do not exceed program blocks
(Sect. 2.3). Program variables defined within a program block (within the instantiation
of a ContextSV) above a certain position are thus not visible. For an illustration,
consider the formula

(int 1 = 1;)asq

which is a possible instantiation of a ContextSV #ct. The symbol a4 in this formula
is not regarded to lie within the scope of the local program variable i.

14This is necessary because program variables can occur free within top-level formulas, contrary to
logical variables (in the KeY system). Hence it is not feasible to specify all program variables that
can turn up within instantiations of schema variables.
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Label Schema Variables (LabelSV)

LabelSV are to be instantiated with labels 1, that occur in Java programs to give
statements names. LabelSV are treated exactly like bound variables (the labelling of
a statement corresponds to an operator binding a variable, and the occurrence of a
label as argument of a jump statement to the occurrence of a variable), which means
that we do not allow statements labelled with 1 to occur within the instantiations of
other schema variables, and we do not allow two LabelSV to be instantiated with
the same label .

Jrabelsv (@) = &

The following two schema variable types are most important for JavaCardDL, and
treat statements and expressions. For statements we will again introduce a new kind
of prefix, namely a set controlling potential abrupt terminations of code fragments.
According to [GJSBO00], Sect. 14.1, a statement can complete abruptly by the following
reasons:

e Execution of a break- or continue-statement
e Execution of a return-statement
e Occurrence of an exception.

Which of these reasons may really turn up for a given concrete statement, and with
which parameters, depends on static properties of the enclosing program, e.g. whether
there are enclosing loops. Thus we formulate a criterion (for the first two items of the
list), based on a simple static analysis of statements, that determines whether a given
statement is compatible with a particular context. This criterion will later be used to
distinguish valid instantiations of schema variables for statements.

Definition (Compliant Termination Behaviour): Let T be a set of Java statements of
the following kinds:

e return-statements, which can optionally have a program variable as argument
(x has to be a program variable, and we allow T to contain at most one return-
statement): return, return x

e break- and continue-statements, which can either be anonymous or have a label
as argument: break, continue, break 1, continue I

We call a fragment « of Java code compliant to T regarding termination behaviour, if

e For every return-statement s; occurring in « (and that is not enclosed in «
by a method—frame): T contains a return-statement sy, such that either both
statements have no argument, or the argument of s; is assignable to the argument
of sy (which, as defined above, is a program variable)

15 Again, such a condition does not exist within the KeY system for the taclet mechanism; it is always
possible to establish the condition by renaming labels appropriately.
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e Every break- or continue-statement s occurring in o whose target does not lie
within « is an element of T. *

The definition does not contain any restrictions regarding the exceptions « might
throw. This is an arbitrary decision (that complies to the KeY policy towards excep-
tions, however), and it would as well be possible to allow throw-statements as elements
of the set T; but as we do not need such restrictions in this document, and the defi-
nition of compliant Java fragments would become a lot more difficult, we omit them.
Exceptions will however be treated in Sect. 4.6.

3.15 Ezample: We consider the statement o, given by'6
m : { break; return 5; break m; }

A set T to which « is compliant has to fulfil the following propositions:

e T has to contain the statement break, which is not enclosed by a target statement
in o

e T has to contain a statement return r, where r is a program variable to which
the literal 5 can be assigned, e.g. of Java type int

e T does not have to contain the statement break m, whose target is the enclosing
statement block and thus lies within a.

Provided that the type of r is compatible, « therefore is compliant to

T = {break,return r}. *

18We ignore that parts of this statement are actually unreachable, which causes compile-time errors
according to [GJSB00].
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Statement Schema Variables (StatementSV)

pvPrefix (exactly as the pvPrefix property of TermSV)

jumpPrefiz | A set J, determining the ways an instantiation of this StatementSV
may choose to terminate abruptly. J can contain:

e At most one PContextSV #pct € S (see below)
e A number of jump statements, which may be chosen from:

— return-statements (#pv € S has to be a PVariableSV):
return, return #pv

— break- and continue-statements, either anonymous or
with labels (#/ €S has to be a LabelSV): break,
continue, break #I, continue #I.

Reflecting Def. 3.14, which states that the set T (of this definition)
has to contain at most one return-statement, we add the following
restriction: J must not contain more than one return-statement, and
J must not contain both a PContextSV and a return-statement.

A StatementSV #s is to be instantiated with Java statements respecting scopes
(following Def. 2.1),!7 that do not contain any method—frame-statements.!®

To decide about the validity of an instantiation ¢ (regarding #s), first a set
T = T4,(¢) of statements is derived from the jumpPrefix-property as the smallest
set with:

e For a PContextSV #pct within the jumpPrefix: Jumps(c(#pct)) C T (see be-
low for PContextSV)

e For a statement st within the jumpPrefix: «(st) € T.

The instantiation ¢ is invalid, if ¢(#s) is not compliant with T (following Def. 3.14).
JstatementSV (a) =«

3.16 Example: In example 3.15, for a statement « the following (minimal) set of jump
statements was determined, to which « is termination compliant:

T = {break,return r}.

Then « also is a valid instantiation of a StatementSV #s that fulfils the following
condition:

jumpPrefix . O {break, return #r}

provided that r and #r have the same Java type (this condition is not necessary how-
ever, the jumpPrefix can also be chosen differently, see example 3.18 below). *

'"This is not demanded in the KeY system, but really seems to be a desirable feature. Otherwise the
instantiation of a StatementSV can alter the binding of subsequent variable occurrences, as it is
demonstrated in Sect. 2.3.

18This restriction has been added for reasons of simplicity, and could be removed without difficulty.
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3.17 Remark (PVariableSV within Prefizes): In Def. 3.14, for a return-statement within
the jumpPrefix of a StatementSV, the program variable given as argument of the state-
ment is not important as a location; only the type of the variable determines whether
a given value can be assigned. To make the considerations of the following sections
easier, we assume however that a PVariableSV occurring within the jumpPrefix of a
StatementSV #s also is an element of the pvPrefix of #s.1 *

Expression Schema Variables (ExpressionSV)

javaType | Instantiations (expressions) allowed for this schema variable must have
exactly this Java type.

pvPrefiz | (exactly as the pvPrefix property of TermSV)

ExpressionSV are to be instantiated with Java expressions.

JExpressionSV(a) =

ExpressionSV do not have a jumpPrefix-property, as the only way an expression may
terminate abruptly is through an exception (this way of termination is not considered
for StatementSV either at the time, but only in Sect. 4.6).

Both for PVariableSV and for ExpressionSV, we restrict the instantiations to expres-
sions having a certain Java type (and, to make things a bit easier, we further assume
that no implicit conversions are applied to the types of instantiations).

The following schema variable type is similar to the ContextSV type, but describes
not an enclosing formula, but enclosing Java blocks and trailing statements. Usually
the schema variable occurs only as the top-level statement of a program block.

19 A5 it is always possible to introduce a dedicated PVariableSV, only to be used within the jumpPrefix
and the pvPrefix of a StatementSV, without further occurrences in a formula, this is no restriction.
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Program Context Schema Variables (PContextSV)

A PContextSV #pct is a unary symbol, and is written as a statement having one
argument (#pct((), like ContextSV). It is to be instantiated with a list o of Java
statements (i.e. a Java program fragment), in which exactly once a special symbol
aypet occurs (which again acts as a statement list placeholder, and is to be replaced
with [3; also see Rem. 3.5). There are only a few positions in a program o where
A4pct MAY appear, namely only within the first statement of o, and the only program
constructs that may precede ax,. within this statement are the opening parts of
the following environments:

e Blocks marked by braces {...}
e Try-blocks
e method—frame-blocks.

Given an instantiation oo = «(#pct), we define a set Jumps(«) of “admissible” reasons
for the abrupt completion of instances of 3, corresponding to Def. 3.14. The elements
of Jumps(a) are determined by those blocks within o that enclose aypc, but that
do not contain any method—frame itself containing a.p.::

e For a (try-)block with label 1, break 1 € Jumps(«)

e For a method—frame with return variable r, return r € Jumps(a); if the
frame does not have a return variable, return € Jumps(a).

JpContextsv (@, 7) = o/, where o/ is obtained from a by replacing ajpe: with r

There is no need to allow program variable prefixes (pvPrefix) of StatementSV or
ExpressionSV to contain PContextSV (contrary to ContextSV, which may appear
within the prefixes of TermSV and FormulaSV), as there must not be any variable
declarations preceding the symbol a,.; within the instantiation of a PContextSV.

We will usually use the notation

o O gpet = Fpet(a)
for program contexts.

3.18 Example (Jump Statements for Program Contexts): For the following instantiation -y
of a PContextSV #pct

10 : {
method—frame ( x ) {
11 : try {

Q4tpet

}
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the set Jumps(7) is determined by looking at the two inner blocks (the block labelled
with 10 is outside of a method—frame and thus not considered):

Jumps(vy) = {break 11, return x}.
Another possible choice for the jumpPrefix from example 3.16 is
jumpPrefix . = {break, #pct}

and then the instantiation ¢ = {#s/a, #pct/~} is valid, provided that the types of the
program variables r and x are compatible (« is the Java statement from example 3.15).
Putting it all together, for the schematic program

@4 = .. while ( true ) {#s} ...4pet

this instantiation would describe the instance ¢(¢y4), in which the break-statement of
« is “caught” by the loop, and the return-statement by the method—frame of the
context:

10 @ {
method—frame ( x ) {
11 : try {
while ( true ) { m : { break; return 5; break m; } }
}

} .

3.19 Remark (Additions to Rem. 3.8): Rem. 3.8 (about the possibility to forbid explicit oc-
currences of logical variables, without loss of generality) also applies to program vari-

ables and labels. Following that remark, we will later usually forbid the occurrences
of

e explicit locally defined (i.e. bound) program variables, which can always be re-
placed by PVariableSV

e explicit labels, which can be replaced by LabelSV. *

3.20 Remark (Additions to Rem. 3.11): For ¢ to be syntactically correct for all valid instan-
tiations of the schema variables S, the following conditions are necessary:

e If the jumpPrefix of a StatementSV #s contains a jump statement, #s has to
be enclosed by an appropriate target statement (being labelled with the cor-
rect LabelSV, having a compatible result variable, etc.), such that there is no
method—frame and no PContextSV between #s and the target

e LabelSV must not occur “freely”, i.e. every occurrence of a LabelSV #l has to be
within a statement labelled with the #[ (and must again not be shadowed by a
method—frame or a PContextSV). *
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3. Taclets

Finally, we need a possibility to prevent contexts from containing modalities at illegal
positions; this is needed to model the keyword sameUpdateLevel for taclets. We only
support a simplified variant of this flag, and do not treat updates in a way distinguished
from other modal operators:

Context Schema Variables (ContextSV)

SUL | If this flag is true for a ContextSV #ct, then an instantiation ¢(#ct) of #ct
must not contain the symbol a4 below any modalities (like updates and box
or diamond operators).

3.3. Taclets with Schema Variables

Having the schema variable toolbox at hand, it is possible to define taclets that rep-
resent more general rules. Namely, by using schematic formulas and terms within the
definition of taclets, whole classes of rules can be described, whose elements are derived
by instantiating schema variables in different ways.

Ezxample: A quite simple rewrite taclet t9, containing the TermSV #x and #y is
find(#x + #y) replacewith(#y + #x)
which subsumes the instantiated taclet to, with ¢ = {#x/z, #y/i}:
find(z +1i) replacewith(i+ z)
An application of ¢, is

F 32.(0=2)i4+2=0 ;
- 3ei=2)z+i=0 " .

The statement varcond that can be included in the definition of a taclet is used
to make instantiations of schema variables fulfil certain conditions; the syntax of the
statement is (as far as it is relevant in this place):

varcond(cy, ..., )
where each ¢; can be one of

e “#qa not free in #b": The instantiation of the VariableSV #a must not occur
freely within instantiations of #b; #b may be a TermSV or FormulaSV

e “#v new”: The instantiation of the PVariableSV #uv has to be a new program
variable, i.e. a variable not already occurring in the proof or within the instanti-
ations of other schema variables?

20Tn the KeY system, this variable condition turns up in two different shapes, and has the possibility to
specify the Java type the new variable shall be given; this is necessary for the untyped PVariableSV
of KeY, but not for our definition.
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3.3. Taclets with Schema Variables

e “#a new depending on #b”: The instantiation of the TermSV #a must be a
new skolem function, whose arguments are the meta variables (i.e. free variables of
the calculus) that occur within the instantiation of the TermSV or FormulaSV #b.
As meta variables are not treated in this document, the second argument actually
has no meaning for us, and the skolem function is a skolem constant.?!

To control program variables that can occur freely within instantiations of schema
variables, a goal template can be equipped with a statement

addprogvar(V;)

where V; is a set (list) of PVariableSV; the effect of such a directive is that the con-
cerned program variables are considered as “free variables” within the sequent described
by the goal template, and can thus appear in instantiations freely without being bound
above.

3.3.1. Restrictions on Schema Variables

The usage of schema variables in taclets is restricted in different aspects; in particular
the values of many properties are not allowed to be chosen arbitrarily, and ContextSV
must not be used “manually” when defining a taclet. To describe this restrictions, let
#81,...,7 sk be the schema variables of a taclet ¢ (i.e. occurring in the definition of
the taclet).

If t is a rewrite taclet, first a further schema variable, a ContextSV #ct is introduced,
representing the position of an application of the taclet.

3.22 Ezxample (Ezample 3.21 continued): To apply the taclet to from example 3.21, the in-
stantiation ¢ would be continued by

L(F#ct) = Fz.(1 = 2;)apqs = 0. *

We demand that ¢t does not contain explicit logical variables, explicit bound program
variables and explicit labels (Rem. 3.8 and 3.19), i.e. that those symbols are replaced
with schema variables. The following properties of #sy,...,#sg, #ct are fixed and
cannot be chosen when defining t:

e The value of the prefix-property of a TermSV or FormulaSV #s; is determined
by the terms and formulas in which #s; occurs, to be the smallest set with:2?

— If the VariableSV #s; = #v; is bound by an operator above any occurrence
of #s;, then #v; € P, except there is a variable condition

v; not free in #s;
J

— If t is a rewrite taclet, then #ct € P, provided that there is at most one
replacewith-statement, and #s; does not occur in if- or add-statements

2Tn the KeY system, the first argument #a is not a TermSV, but has a distinguished type only used
for introducing skolem symbols.

*?This is taken from [Gie02], with some of the conditions having been removed, as they are implied
by Rem. 3.20 we are going to use.
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o If t is a rewrite taclet, then the unique-flag of the ContextSV #ct is true, and
the SUL-flag is true iff the directive sameUpdateLevel is given

e For a PVariableSV #s; = #u;, the unusedOnly-flag is true iff? there is a variable
condition
#v; new

e For a schema variable #s; having a pvPrefix-property, its value P contains a
PVariableSV #s; = #v; iff24
— the unusedOnly-flag of #uv; is false or

— each occurrence of #s; lies within the scope of a declaration of #vj,% or it is
part of a goal template in which #wv; is argument of a addprogvar-statement

e For a StatementSV #s;, the value J of the jumpPrefix-property is determined
by those blocks and PContextSV that enclose any occurrence of #s;, but that
do not contain a method—frame or another PContextSV itself containing #s;
(similar to the map Jumps defined for PContextSV):

— Provided that #s; is enclosed by a suitable target statement respectively,
break, continue, break #I, continue #[ € J

— For a method—frame with result variable r (this can also be a PVariableSV),
return #v € J, where #v shall be a new PVariableSV having the same type
as r (and that is also to be included in the pvPrefix of #s;, see Rem. 3.17);
if the frame does not have a result variable, return € J

— For an enclosing PContextSV #pct, #pct € J.
3.23 Example: For the rewrite taclet ¢3, defined by

if(#0=0 F ) find((.. #Lif ( #i== 0) #s5; ...4pe)#p) sameUpdateLevel
replacewith((.. #U:{ #s; } ...#pct>#p)

the following schema variable properties would be enforced:

Sym. | Type u.Only | prefix | pvPrefix | jumpPrefix unique | SUL
#ct | ContextSV true true
#pct | PContextSV

#p | FormulaSV {#ct} | {#i}

#s | StatementSV {#1} {#npct, break #l}

#l LabelSV

#i PVariableSV | false

*

231t would also be reasonable to set the flag for PVariableSV occurring only bound within a taclet, i.e.
for PVariableSV that occur within the scope of an appropriate variable declaration within a Java
program. This would however require program variable prefixes to be defined also for ContextSV
and PContextSV.

24The following conditions are not very useful for PContextSV not appearing in find- or if-statements
(but only in replacewith or add), but this is not relevant for the KeY system. Otherwise, it would
again be necessary to introduce prefixes for PContextSV.

25 And this also implies that #s; is not enclosed by a method—frame that also lies within the scope
of the declaration.
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To ensure that instantiated taclets are syntactically correct, we refer to Rem. 3.11
and 3.20 made in Sect. 3.2. The remarks are required to hold for the following formulas
of a taclet ¢:

e For each formula of the sequents Pif = Aif, Fadd,l = Aadd,lu cey Fadd,k = Aadd,k:
(as in Sect. 3.1)

e If ¢ is a lemma taclet, for the formulas of the sequents A, and for By, ..., By

e If ¢ is a rewrite taclet, for the terms or formulas #ct(A), #ct(B1), ..., #ct(Byg).

3.3.2. Meaning Formulas of Taclets

While possible instantiations of a taclet ¢ have been determined through the definition
of schema variables, the instructions for applying ¢ in a certain situation was only
roughly described upon the introduction of taclets. In the KeY system, this application
mechanism is hard-coded in Java and of considerable complexity, a detailed analysis is
therefore beyond the scope of this document. The meaning of a taclet (i.e. the semantics
belonging to the abstract syntax of a taclet, as given in Sect. 3.1) is rather specified by
the definition of a map 9, which assigns each taclet ¢ a meaning formula (for which we
mostly follow [Hab00|), which describes the effect of a taclet in an axiomatic way. In
general, the meaning formula of a taclet contains schema variables and should thus be
regarded as a whole family of formulas, whose members are obtained by instantiating
the variables.

This map 91 can be seen as a method to reduce a calculus Ta, whose rules R are
given by taclets, to a calculus HT with a small set of basic rules (e.g. propositional
rules) and set A = 9(R) of axioms (this is formalised in Def. 4.11). By postulating
that proofs of the calculus Ta can be translated to proofs of HT

bra ¢ = FHT @

a criterion for the correctness of a taclet application mechanism is given, provided that
the basic rules of the calculus HT and the map 997 are considered as “correct”.
A possible calculus HT (a Hilbert-style calculus) is introduced in Sect. 4.2.

In the following paragraphs, we will describe a construction of the meaning formula
for a taclet ¢ (mostly taken from [Hab00]). In several aspects, there is however no
“canonical” way to interpret the description of a taclet, and the definitions given in
this place should therefore be regarded as a proposal. A more detailed explanation of
the shape both of meaning formulas in general and of the following definitions can be
found in [BGH"03]. We are using the same notation for a taclet as in Sect. 3.1:

[if(Tis F Aig)] [find(A)] [sameUpdatelevel ]
[ varcond(cy, ..., ) |
[replacewith(Bi) ] [add(T'aaa,1 F Aaaa1)] [addprogvar(Vi)];

[replacewith(By)] [add(lagar © Qadak)] [addprogvar(Vy) ]
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3. Taclets

To get a shorter notation, in the following paragraphs we identify a sequent with the
disjunction of its formulas

Olyeeeston B o1, 0o Uy, — o1 VoV o Vi Vo Vb,

and for missing if-, add- or find-statements in a taclet description we define the
argument to be the empty sequent respectively, for a missing replacewith-statement
the argument of the find-statement shall be used.

For a lemma taclet ¢ the central part of the meaning formula is

m'(t) =

~.

<Bi V (Taga;i + Aadd,z‘)) — <A\/ (Pie F Aif))
1

and for a rewrite taclet
k
i)ﬁ'(t) = /\ ((#Ct(A) = #Ct(Bi)) - (Fadd,i F Aadd,i)) - (Fif H Aif)-
i=1

For the complete meaning formula it is furthermore necessary to treat variable condi-
tions; we assume that ¢ contains the statement

varcond(#t; new depending on _,...,#t,, new depending on
#v1 new,...,#v; new,

_ not free in _,...).

We need additional VariableSV, not occurring in 9V (¢):
e m variables #x1,...,#x,,, having the same sorts as #t1, ..., #tm
e [variables #y1, ..., #y;, having the sorts assigned to the PVariableSV #uv1, ..., #u;.

9" (t) shall denote the formula obtained from 9% (t) by replacing #t1, ..., #t,, with
the VariableSV #ux1, ..., #x,,. The complete meaning formula finally is

M(t) = F#xy. ... IHe, Iy Iy {FHo = Fy, . Fo o= Fy ' ().

3.2/ Example: The meaning formulas of the rewrite taclets to and t3 from the examples 3.21
and 3.23 are

M(to) = #ct(#x + #y) < #ct(F#y + #x)
M(t3) = #i =0 — (F#ct(p1) « #ct(p2))

where

o1 = (. #LAF ( #Fi==0) #s; cosppet)#D 02 = (o Fl{ #55 F oopet) #D- %
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3.3. Taclets with Schema Variables

3.25 Example: For the taclet t4, in which #u and #v denote PVariableSV, and #e an
ExpressionSV

find((.. H#Hu= Fe; ...#pct>#p) varcond(#v new)
replacewith((.. int #v= #e; #u= #uv; ...#pct>#p)
the meaning formula is
M(ty) = I#Hx{#v 1= #x} (#ct(cpl) — #ct(cm))
Y1 = < #Hu= #e; ~--#pct>#p Y2 = < int #v— #e; #u= F#v; ---#pct>#p-

In 9M(t4), the quantifier and the update are actually quite useless, as the concerned
program variable is declared as a local variable within the program block. A more
interesting example would thus be ¢5, in which a program variable is used as a skolem
constant:

find(ﬂ#m.(#x =4#t) F ) varcond(#x not free in #t,#v new)
replacewith(#v = F#t + ) addprogvar(#v)

M(ts) = Tty {#v := H#y) (e (o = #1) — #o = #t). ;
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4. Construction of Proof Obligations

4.1. Basic Definitions

In Sect. 3.2 schema variables are introduced, which can be used to describe sets of
formulas, terms or programs. This concept is generalised (for formulas) in the following
definition:

Definition (Schematic Formula): A schematic formula B is a recursive set of formulas.
An element ¢ € P is called an instance of L. *

This rather abstract definition makes it possible to describe numerous kinds of calcu-
lus rules by reducing them to schematic formulas that are regarded as axioms. Examples
for formulas that will be used and described in more detail in this document are

e The meaning formulas of taclets, as defined in Sect. 3.3.2 (which are formulated
using schema variables)

e Formulas that describe the application of object-level substitution operators, e.g.
the set & = {p « ¢’ | ¢ € For}, where ¢ is derived from ¢ by applying a sub-
stitution operator occurring within ¢ (resolving collisions if necessary). These
formulas are discussed in Sect. 4.4.3 and 5.1.1

e Similar formulas that define valid operations on update operators, the execution
of meta operators, etc. (Sect. 5).

We continue the notion of derivability to schematic formulas by considering their
elements:

Definition (Derivability of Schematic Formulas): A schematic formula 3 is called deriv-
able in the calculus K, written as

Fk P
if each element ¢ € P is derivable in K: Fx . *

The most important kind of schematic formula we discuss in this document are
formulas containing schema variables to be substituted by syntactic constructs like
formulas, different kinds of variables, terms or programs, as defined in Sect. 3.2. In
that section, it has already been stated that formulas which contain schema variables
describe sets of formulas:

Lemma (Schematic Formulas and Schema Variables): Let S = {#s1,...,#si} be aset
of schema variables, and ¢ € Syngy(S) (as in Def. 3.3) be a formula, possibly containing
schema variables. Then the set

PB(e) := {t(p) | ¢ is a valid instantiation for each #s;}

is a schematic formula.? *
Remark: To get a shorter notation, we will identify the formula ¢ and the schematic
formula PB(p), and write P for both. *

260One could add the premise that the validity of an instantiation ¢ has to be decidable for each schema
variable #s;.
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4.2. A Hilbert-style Calculus using Schematic Formulas

In this section, we introduce a very simple calculus that is based on axioms given by
schematic formulas, as it has already been announced in Sect. 3.3.2. This calculus
will be used to represent sequent calculi defined through taclets in a more convenient
way: Instead of referring to a specific taclet application mechanism, taclets will first be
transformed into their meaning formulas. Further considerations can then be performed
independently from the exact definition of taclet applications. Beside taclets, other
kinds of rules can be represented as axioms in a natural way, too.

To make proofs about sequent calculi easier, in this section we will use the following
convention: After having performed [ rule applications, the state of a sequent calculus
proof can be represented by a finite set {G1,..., Gy} of sequents, which are the goals
that have not yet been closed. We treat such a state as a single formula, namely
each sequent G; is regarded as the disjunction G of its formulas (the formulas of the
antecedents are negated), and the whole proof state is represented by the conjunction

of these formulas G7,...,Gj (note that we do not allow the formulas to contain free
variables). A closed sequent calculus proof of a formula ¢ is then given by a list of
formulas:

¢7£17 e 7€n—17€n - true

where each &; is derived from &;_; by applying a rule. Thus a sequent calculus rule r
can be seen as a description how to obtain formulas &; from & _1.

The basis of the calculus we introduce is an implicit handling of propositional trans-
formations. This is enabled by the well-known fact that the propositional satisfiability
problem for finite sets of formulas is decidable. First we need two basic definitions:

4.5 Definition (JavaCardDL as a Propositional Logic): We call a JavaCardDL formula ¢
a propositional atom, if the top-level operator of ¢ is mot a propositional junctor.
Two propositional atoms ¢,1) are regarded as equal, if they are equal modulo bound
renaming: ¢ =y . An arbitrary JavaCardDL formula ¢ can then be regarded as
a propositional formula, consisting of junctors and the maximal propositional atoms
contained by ¢. *

4.6 Ezample: As an example, we consider the following formula, in which maximal atoms
are shaded:

(Vz.p(x) A ()q) — (Vv Yyp(y))

Thereby the atoms Vz.p(x) and Vy.p(y) are regarded as equal, and thus the proposi-
tional structure of the formula is (A A B) — (C'V A). *

4.7 Definition (Propositional Reasoning): Based on Def. 4.5, the following notions can be
introduced straightforward:

e A set F of JavaCardDL formulas is called propositionally unsatisfiable, if there
is no complete replacement of the occurring maximal propositional atoms with
true or false, such that equal atoms are replaced with the same value, and such
that all formulas ¢ € F become true.

37



4. Construction of Proof Obligations

e Propositional derivation is written and defined as
F ko ¢ <= FU{-p} is propositionally unsatisfiable®’

where F is a set of JavaCardDL formulas, and ¢ is a single JavaCardDL formula.

e Propositional equivalence of two JavaCardDL formulas ¢, is defined as

=gV = Fo @ <« . %

The abstract way we defined schematic formulas (which are to be used as axioms)
implies that changes made to a vocabulary of a logic in most cases require further
changes to be made to the schematic formulas (treated as sets of formulas). To avoid
this, we will assume that our vocabularies always contain sufficient sets of skolem
symbols we are eventually going to introduce. These symbols are (in most cases)
just normal predicate or function symbols, that we however require to be “sufficiently
unused”. By “unused” we mean that no rule or axiom explicitly distinguishes certain
representatives of the symbols, instead we require that it is always possible to exchange
occurring symbols. The term “skolem symbol” is in the following pages avoided, as we
will later define a family of symbols that is exclusively nominated that way.

4.8 Definition (Unused Symbols): A set of unused symbols regarding a set A of schematic
formulas is an infinite set Sk of symbols of a specific kind (e.g. constants of a given
sort, functions with a given signature, etc.), that satisfies the following condition: For
¢,d € Sk and Y € P € A containing ¢ but not d, the formula obtained from 1 by
replacing ¢ with d must also be an element of 3. *

Consequently, for the following definition we assume to have a set C(gy) of infinitely
many unused constant symbols for each sort of Sort.

4.9 Definition (Hilbert-style Taclet Calculus): For a given set A of schematic formulas,
such that Cgy) is by Def. 4.8 a set of unused symbols regarding A, the calculus
HT = HT 4 is defined in the following way:

1. An HT-proof of a formula ¢ is a list of formulas
_'9071[)1"" 7¢k

where each of the formulas 1; has been introduced by one rule application

2. The rules available in HT are

— (Ax)

- (Ex)

dz.¢ & {x/c}C

where ¢ € P € A is instance of a schematic formula and ¢ € C(gy) is an unused
constant symbol, that has the same sort as x. ¢ must neither occur within the
proof so far, nor in ¢, and ¢ must not contain free variables except x

2™In this document, the formulas ¢ for which we apply the definition are always closed.
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3. An HT-proof is closed if the set {—p,91,...,1} is propositionally unsatisfiable,
or equivalently if ¢ is entailed propositionally by {¢1,..., ¢y}

{sz)la"'ad}k} ':0 SD k

The rule (Ex) is needed for the introduction of new symbols, as it is not possible to
formulate a skolemisation-rule by using schematic formulas only (a particular instance
of a schematic formula can always be introduced more than once within a single proof).
Note that it is possible to rename a constant e € C(gy)\{c}, occurring in a formula

. {z/c}C

introduced by the rule (Ex) by any other symbol d € C(gy)\{c,e}, provided that d
does also not occur in the proof or in ¢, without invalidating the application of (Ex).
Together with Def. 4.8 (of unused symbols) it is therefore always possible to rename
symbols ¢ € C(gy) that have been introduced by the rule (Ex) by new symbols d € C gy
within a whole proof H, without making rule applications invalid or a closed proof open.

Ezample (HT-proof): We demonstrate a simple HT-proof, using the axioms
A = {Man_tetr), S}

where G is the substitution formula, defined in the beginning of Sect. 4.1, and Man 1efr)
is the meaning formula of the rule (all_left)

Man_tefs) = VH#T-H#p — {#x Ft}Hp.
The formula to be proved is
© =Va.p(x) — Jz.p(z)

and the proof H, could be:

~(Vo.p(z) — Ja.p(z)), —p

Swp(x) < ple), (Ex)

Ve.p(z) — {z c}p(x), IMian_1eft)

{z c}p(x) < plo) S
The proof is closed, as the formulas of the left column form a propositionally unsatis-
fiable set. *

For a given sequent calculus Ta having the rules A’, we will construct a set A of
schematic formulas to be used with the calculus HT. This will be done by defining
a meaning formula for each sequent calculus rule r, with the intention to make the
complete set of meaning formulas equivalent to the original set of rules:

Definition (Aziomatisation of Sequent Calculus Rules): Let A’ be the rules of the se-
quent calculus, A a set of schematic formulas. A is said to be equivalent to A’, if
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4. Construction of Proof Obligations

1. For all instances ¢ € P € A: bma,, ¢

2. For each sequent rule application, deriving & from ¢ (in the sequent calculus
representation from above): There is an (not necessarily closed) HT A -proof

_‘537#1,---’1/%

such that =&’ can be derived propositionally (according to Def. 4.7):
{_‘fﬂﬁla---ﬂﬁk} ':0 _'6/' *

This definition can also be seen as the definition of correct rule application mecha-
nisms; namely when providing a method to construct the set A from a set of rules A’
(as it is done in Sect. 3.3.2 for taclets by the derivation of meaning formulas), the propo-
sitions of Def. 4.11 can be postulated and determine whether a mechanism applying
the rules A’ is correct.

4.12 Ezample: To illustrate item 2 of Def. 4.11, we consider the rule application

= p(c)

————— (all right
F Vz.p(z) (all_right)

i.e. we have { = Va.p(z) and £’ = p(c). The axioms are now A = {1 1efr), S}, where
the meaning formula of (all_right) looks like

Man righyy = I#Y-({#2 #y}#p — V#x.#p)

and the HT-proof would be established by using My rigns), (Ex) and by applying the
substitution formula &:

—Vr.p(x),

Jy.({z y}p(z) — Vo.p(2)), M(an_right)
Fy.({z yip(x) — Va.p(z)) « (= cip(z) — Vo.p(z)), (Ex)

{z ¢}p(x) < ple) S

For the set F of the formulas in the left column we obviously have
F Fo —p(c). *

If the rules A’ of a sequent calculus Ta are represented by an equivalent set of
schematic formulas A, then the calculus HT 4 is also equivalent to the sequent calculus
Ta A’

4.13 Lemma: Given that
e A’ and A are equivalent
e Tap: provides the cut-rule

e Tap is propositionally complete (following Def. 4.5)
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4.2. A Hilbert-style Calculus using Schematic Formulas

e Ta,/ provides a rule equivalent to (Ex)

I 3z.¢ < {z/c}¢ F A
r = A

(Ex’) ¢ € C(gx) new

then HT' A and Ta,: are able to prove the same formulas:
Fra,, ¢ <= FHET, ¢ *

Before we prove Lem. 4.13, we will formulate another, very simple one that will be
useful eventually:

4.14 Lemma: Let E be a propositionally unsatisfiable set of formulas with ¢ € E, and F a
second set of formulas, such that
F ':0 @.

Then the set E\{¢} UF is propositionally unsatisfiable. *

Proof (4.18): “=" We show that every Ta-proof of a formula ¢ can be translated into
an HT-proof by induction over the length n of the Ta-proof

@7515 cee agnflyén = true
e n =0: ¢ = true, therefore the set {—true} is unsatisfiable

e n > (0: We assume to have a closed HT-proof

_'5151#1,' .- 7¢k
of &. From Def. 4.11, it follows that there is an HT-proof
P, Y

satisfying
{_'9071#37 s 77%} ':0 _'61-

Without loss of generality, applications of (Ex) within 1, .. .,y introduce only
symbols that do not occur in {—¢, ¥/, ..., ;} (renaming is always possible). Then

_‘%0a¢/1,--- 7¢l,,¢15--- ,¢k
is a closed HT-proof (by Lem. 4.14).

“«<=" We construct a Ta-proof of ¢ from the HT-proof

_‘%0a¢1,---»¢k

by starting with the sequent F ¢ and adding the formulas %q,...,%; to the an-
tecedent:

e If ¢; has been introduced by the (Ax) rule, we use the cut-rule and are able to
close one of the arising sequents by Def. 4.11, 1
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o If
;= 3x. A {z/c}A

has been introduced by the (Ex) rule, we use the rule (Ex’) of Ta (and replace
the original constant ¢ within ¢;;1,..., %y by the new one)

The resulting sequent 1, ...,%r F ¢ can be closed by propositional rules. O

The rule (Ex’) that was used in the lemma is not a rule sequent calculi usually
provide, but can be simulated up to propositional transformations with standard rules
(the symbols I'; A are omitted, and we use (' := {z/c}():

*
CTIECET ¢ - Su (out) :
4 :
7 F ¢ F 3 F Jag, ¢
eyl F 3r.c (cut) *
dz.( —» dz.¢ () F Jz.¢ — Jx.(

C (cut)

4.3. Introduction of Lemma Rules

In Sect. 3.3.2 we have defined a map 9t that reduces taclets to axioms, which are
schematic formulas in terms of Sect. 4.1. In the previous section, this reduction was
continued by introducing an appropriate calculus that employs these axioms, and that
is equivalent to a sequent calculus defined through the corresponding taclets.

We assume that we are given a set A’ of sequent calculus rules, and a further rule (r)
that is supposed (and to be shown) to be a lemma which can be derived from A’.
As (r) is a calculus rule, this means that every formula ¢ that can be proved by the
rules A’ U {(r)} can even be proved by A’:

l_TaA/U{(r)} § - I_r.[‘ElA/ g

A way to show this implication is to translate both A’ and (r) to schematic formulas
A, M), and then prove M,y in the calculus HT o (by Def. 4.2, this means that each
instance of M) has to be proved). Subsequently, it is possible to apply Lem. 4.14, and
eliminate the axiom My from HT-proofs

l_HTAU{QJI(r)} 5 — I_HTA 5

because instances of 9,y in the proof of { can be replaced with their HT s-proofs.
The whole procedure is illustrated in the left part of figure 2.

In the remaining part of Sect. 4 we discuss how to prove axioms representing sequent
calculi rules, i.e. how to provide the premise Fur, M) for Lem. 4.14 (the right part
of the diagram).
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Rule (r)
. 413 i/ Sect. 3.3.2
em. 4.
l_TaA’u{(r)} § ——= }_HTAU{W(I)} & Axiom M) ——= Proof obl. pp,
: ¢ | Sect. 4.4, 4.6 ¢
Y Lem. 4.14 Y
l_TaA/ 3 B — "HTA § =— "HTA m(r) D "HTA ¥po
Lem. 4.13
Lem. 4.13 $
'_TaA/ ¥po

Figure 2: The proof of a lemma rule (r) for a sequent calculus by deriving it from
existing rules A’. This diagram can be seen as a refinement of figure 1.

4.4. Proving Schematic Formulas for First-Order Logic

To show the derivability of the meaning formula 9B := M(¢) of a taclet, which is a
formula that contains schema variables, we have to derive each instance of B (following
Def. 4.2):

Fk P <« forallpeP: Fx o

This issue is discussed for first-order logic in this section, and the reasoning will be
extended to dynamic logic later. The proof obligations we construct for first-order
formulas are essentially identical to the proof obligations described in [Hab00], but we
are using a different approach to show the correctness of the method.

For first-order logic, we allow the schematic formula P to contain schema variables
of the types

e VariableSV
e TermSV

e FormulaSV

as defined in Sect. 3.2.1 (in particular we will not consider the supplementary properties
for some of the schema variables, introduced in Sect. 3.2.2). We do neither consider
modalities and program variables, nor treat ContextSV explicitly at the time, i.e. we
forbid B to contain any. Further we assume Rem. 3.11 to hold for 3, and, to make life
a bit easier, we forbid the occurrence of any explicit logical variables within ‘B (which
is no real restriction, as it is always possible to replace variables by VariableSV).

The important steps of the method, as seen by bird’s-eye (and in figure 2) are

1. We instantiate P with skolem constants, functions and predicates (which, for
FOL, are just normal symbols and syntactic elements; for handling dynamic logic,
however, we will have to introduce special kinds of skolem symbols, behaving
in a well-defined way, especially when applying updates). The resulting formula
¥Ypo € P is called the proof obligation of the taclet (or of the schematic formula ).
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4. Construction of Proof Obligations

2. The formula ¢p, is to be proved (which is not our task). We are assuming that
we are given an HT-proof of ¢, but if the calculus HT is made a sound and
complete calculus for FOL by choosing an appropriate set A of axioms, obviously
a proof may be constructed using an arbitrary calculus. Also notice that Lem. 4.13
can be used, and that it will usually be sufficient to prove ¢}, within the sequent
calculus Ta.

3. Finally, the derivability of ‘B is shown by lifting the proof of ¢y, from the second
step, i.e. by showing that for each instance ¢ € 3 we are able to modify the
proof, gaining a closed proof of . This translation depends on the rules and
axioms HT provides, whose applications need to be modified without making
them invalid; for FOL we will therefore assume that A does only contain two
classes of rules, namely taclets (or, more generally, schematic formulas defined
using schema variables) and the substitution formula & (actually we will use a
slightly different formula, which is introduced in the next section).

4.4.1. Definition of the Proof Obligation

For FOL and the mentioned three types of schema variables, the formula ¢, is obtained
from P by a straight-forward instantiation of the contained schema variables using
skolem functions and predicates. For that, we require the considered vocabularies
to contain both skolem functions and skolem predicates for every possible signature,
following Def. 4.8.

Def. 4.8 formulates a condition on the set A of schematic formulas that will later be
used to prove the proof obligation. Hence this set A has to be fixed already at this
point, and in particular before the skolem symbols are chosen. This means that the
proof obligation of a schematic formula depends on the rules available to prove it; this
fact will become much more important for richer logics (namely dynamic logic), but
also for FOL the formula ¢, we are about to define is a sufficient obligation only for a
well-defined set of rules (which are, roughly spoken, all axioms that can be defined using
the FOL schema variables from Sect. 3.2, and substitution; a more precise definition is
given in 4.4.2).

¢po is derived from P by performing the following instantiations:

e VariableSV #wv are instantiated with arbitrary distinct logical variables that have
the same sort as #wv

e TermSV #t are instantiated with terms fsk(z1,...,xx), where

— x1,...,T} are the instantiations of VariableSV within the prefix of #¢, which
are exactly the logical variables that can occur free in instantiations of #t by
the definition of VariableSV (note that the prefix only contains VariableSV)

— fsk is a skolem function symbol that does not yet occur within 3 or as instan-
tiation of any schema variable, and that has the signature (S1,...,5;) — S

— 51,...,S5; are the sorts of z1,..., 7
— S is the sort of #t
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4.4. Proving Schematic Formulas for First-Order Logic

e FormulaSV #p are instantiated with formulas psk(z1,...,x) which are chosen
analogously to the instantiations of TermSV.

The chosen instantiations satisfy the schema variable definitions of 3.2, thus ¢p, € B.

4.4.2. Lifting Proofs

In this section we show that the implication

FHTA ¥po = FuT, B (4)

holds for schematic formulas B (as defined in the beginning of Sect. 4.4) and the
particular proof obligation ¢p, of ‘B, which was constructed in 4.4.1. The set A is
defined to consist of two kinds of schematic formulas

e Formulas £, which are given by formulas that may contain schema variables of the
types VariableSV, TermSV, FormulaSV and ContextSV, as defined in Sect. 3.2.
We assume that Rem. 3.11 holds, that 9 does not contain explicit logical variables
(see Rem. 3.8), and that for each ContextSV the unique-property is not set. These
formulas correspond to a set of taclets specifying a sequent calculus Ta

e The substitution formula &, as defined in 4.4.3.

We are supposing the premise of implication (4), i.e. that the proof obligation ¢pe
has been proved using the calculus HT o: The (closed) proof H shall be given by the
formulas

“Ppo, Y15+ Vs

We have to show that not only ¢p,, but every instance ¢ € ‘B can be proved. For
that, in each formula of H we replace each skolem symbol introduced in 4.4.1 by the
“real” instantiation of the same schema variable within ¢, thus getting a modified proof
HI

_|SD£)05¢117 tet ?/IYZ};{;'

We claim that H’ already is a proof of ¢, i.e. that <p;0 and ¢ are equal modulo bound
renaming, and that the new “proof” is still valid, which means:

1. Each modified ¢} can be introduced by a valid rule application. It would also be
sufficient to show that 1)} is derivable (then we are able to apply Lem. 4.14 and
replace ¢; with its HT so-proof). For formulas created by the rule (Ex) in the
original proof H, this alternative condition does usually not hold.

2. The modified proof is still closed.

First, we describe the modifications leading to H’:
Without loss of generality, the following assumptions are made:

e VariableSV are instantiated with the same variables both in ¢, and ¢ (we are
always able to rename bound variables in ¢y, or ¢ because of Def. 4.5)
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4. Construction of Proof Obligations

e Constants ¢ € C(gy) introduced by (Ex) in H, and skolem functions or predicates
that are used to create ¢p, do not occur in ¢ (because of Def. 4.8 it is always
possible to replace those symbols by unused ones).

Now, in each formula & € {—¢po,¥1,...,¥,} we replace skolem symbols fsi and
psk from 4.4.1. This is performed using a f-substitution o (as defined in Sect. A.1).
Contrary to normal substitutions, f-substitutions do not replace logical variables, but
function and predicate symbols (which do not have to be nullary) with terms and
formulas respectively.

® 0cont (as in Def. A.4) shall be given by

Ocont (fsx) = (s, (x1,..., 21)), Ocont (Psk) = (¢, (Y1, -+ -5 y1))

for each TermSV #t instantiated with fsk(x1,...,2%) in @po, and with the term
s in ¢; and for each FormulaSV #p instantiated with psk(y1,...,y) in ¢po, and
with the formula ¢ in ¢. This means that o replaces fskx (resp. psk) with the
term s (resp. the formula (), whereby the logical variables (x1,...,x) (resp.
(y1,...,y;)) are treated as formal parameters within the replacements.

e There is an f-substitution ¢ corresponding to ocont, as the conditions of Def. A.4
regarding sorts are fulfilled:

— The construction in 4.4.1 immediately entails that the argument sorts of a
skolem symbol sgk are compatible with the variables (z1,...,zg).

— For TermSV #t: The instantiation s of #t in ¢ has the same sort as #t
(this follows from the schema variable definitions in 3.2), which is also the
sort of the skolem symbol fsx.

e As the instantiations of TermSV and FormulaSV may only contain free variables
that are allowed by the prefix of the schema variable, Lem. A.8 holds for o, i.e.
applications of ¢ do not introduce free logical variables.

e Depending on the way £ had been introduced in H, we obtain an appropriate
f-substitution o¢ from o by renaming bound variables, that can at least b applied
to £ without collisions:

— If £ results from an application of the rule (Ax), we use the f-substitution
w =: 0¢ Lem. A.18 (about the application of f-substitutions to instances of
schematic formulas) provides; namely, because of Def. 4.8, skolem symbols
sskx must not occur in £, and insertion points a4 of ContextSV #ct cannot
occur in o either by Rem. 3.5 (also see Sect. 4.4.3 for Gy,).

— Otherwise, we use the f-substitution w =: o¢ given by Lem. A.12, which can
be applied without collisions to &.

The resulting formulas & = 0¢(§) are the formulas of the proof H'. Note that the
substitution o itself does not depend on ¢, and that all substitutions o¢ are equal
modulo bound renaming.

46



4.4. Proving Schematic Formulas for First-Order Logic

The names we did just introduce will also be used within the following paragraphs.

We get a proof for the right formula, i.e. v, =br ¢
We show that even o can be applied to ¢y, without collisions (by considering Def. A.10
of collisions):

e We have already seen that Lem. A.8 holds for o, therefore the instantiations of
TermSV or FormulaSV in ¢ do not contain additional free variables.

e Skolem symbols occur within ¢y, only as sgk(x1,...,xx), thus
o(ssk(x1y...,xx)) ={z1/x1,.. ., 21/} T =T, (5)
with  ocont(ssk) = (T, (z1, ..., xk))

cannot lead to any collisions.

As o and 0, are equal modulo bound renaming, so are (¢po) and o—,,, (¥po) = Ppo
(Lem. A.14). Furthermore we have o(ypo) = ¢ because, following equation (5), o re-
places every instantiation sgx(z1,...,xx) of #sv in ¢pe by the corresponding instanti-
ation 7" in ¢ (and instantiations of VariableSV are equal by assumption).

The modified formulas )} can be introduced by valid rule applications:
There are three different cases, discriminated by the way 1); is introduced in the original
proof H:

e The rule (Ax) is used, together with a schematic formula Q that is defined using
schema variables. Then Lem. A.18 tells us that ¢, can also be introduced, again
using the rule (Ax) and Q.

e The rule (Ax) is used, together with the substitution formula Gy,. In Sect. 4.4.3
we prove that oy, (1;) € Gm.

e The rule (Ex) is used, and
Vi = Jr.a < {r/cta, with c€ Cgy, o € For.
Then we have to show:

— The constant ¢ does not occur within {—},, %7, ..,%;_1}: By assumption
we have ¢ ¢ F'S(p) (thus ¢ ¢ FS(p,,)), and therefore c is not introduced by
o either: ¢ ¢ Cod(o) and ¢ ¢ Cod(oy,). Because ¢ does not turn up in the
formulas 1)1, . ..,1;_1 of the original proof by the definition of the rule (Ex),
this entails ¢ ¢ FS(¢y}) = FS(oy,(¥)))

— 1)} can also be created by (Ex), i.e. ¢} = 3z.¢ < {z/c}( for a suitable for-
mula ¢ that does not contain c:

1/}; = Oy, (i) = 0'1/,1,(3%.04 < {z/cta)
= Jz.oy, (o) < oy, ({z/c}a) © Jx.0y, () < {x/0y,(c)}oy, ()

= Je.0,(0) & {a/c}oy, ()
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4. Construction of Proof Obligations

where (%) uses Lem. A.16 about the concatenation of f-substitutions. The
presumptions of this lemma hold, as by construction the application of oy,
to « is collision free, and because neither Dom(oy,) nor Cod(coy,) contain
the logical variable x. Furthermore the definition of ¢ immediately entails
¢ ¢ Dom(oy, ), which enabled the last transformation.

oy, () does not contain ¢ because of ¢ ¢ Cod(c), and because ¢ does not
occur in a.

The proof H' is closed:

f-Substitutions do not modify propositional operators, therefore the £ arises from £ by
replacing propositional atoms « with o¢(«). It is sufficient to show that propositional
atoms «, ( which are equal in H (which means, they differ only on bound variables)
are represented by formulas o/, " in H' that are also equal (modulo bound renaming).
This follows directly from Lem. A.14.

4.4.3. About Substitutions

In 4.1, as an example we defined a schematic formula describing the application of
(object-level) substitution operators. For comfortable proof lifting, however, we need
a formula that is defined a bit different, namely the more general substitution formula
G D 6, which also contains formulas that describe repeated application of substitu-
tion operators (at least for certain situations, namely a sub-term or -formula appearing
more than once). This formula will have the nice property of being closed under certain
kinds of f-substitutions (if collisions are resolved when applying the f-substitution by
renaming bound variables).

To reuse results that are available for schema variables, we define &, to be a subset
of the schematic formula

R = #ct(#a) — Fct(#b), prefix ., = prefixy, = {#ct}*®

where #a, #b are either both TermSV or both FormulaSV, and #ct does have the
unique-flag set to false. For Gy,, we restrict the instantiations of #a, #b to {#a/{zx s}t},
{#b/{x/s}t'}, with the first substitution being the object-level substitution operator,
and the second one the meta-level substitution. We require that collisions which may
arise upon application of the meta-level substitution are resolved in ¢ =, ¢ by bound
renaming.

4.15 Lemma: Let ¢ € &, be an instance of G,,, and o be an f-substitution that satisfies
the conditions of Lem. A.18 (about the application of f-substitutions to instances of
schematic formulas) regarding the formula ¢ = ((R). Then we have

w(p) € Gm

where w =p; o is the f-substitution that is obtained from ¢ by bound renaming. *

28 This means that variables bound in instantiations of #ct may occur free within instantiations of #a
and #b (provided that scopes are respected, i.e. instances of R do not contain free variables).
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4.4. Proving Schematic Formulas for First-Order Logic

Roughly spoken, this means that &, is closed under (collision free) applications of
f-substitutions.

Proof: Suppose that ¢ = ((R) € Gy, is an instance of Sy, with

v={#ct/C #ta/{x st #b/{x/s}t'}

and o is an f-substitution satisfying the conditions of Lem. A.18. Then (by Lem. A.18)
there is an f-substitution w =y, o, which can be applied to ¢ without collisions, such
that

w(p) =r@R), k= {#ct/w(C),#a/w({x s}t) #b/w({z/s}t)}

i.e. in particular w(p) € R. We can furthermore assume that the application of w to
t' is collision free by Lem. A.12, because we have Cod(c) N Var = () as a premise of
Lem. A.18.

For the stronger statement w(p) € Sy, C R (which is our goal), we can observe that
w (or equivalently o) satisfies the conditions of Lem. A.16 regarding the substitu-
tion {x/s}, which provides a way to concatenate the two substitutions. Namely, for
f-substitutions in general we have Dom(c) N Var = (), and Cod(c) N Var = () has al-
ready been observed. The application of w to ¢’ is collision free by assumption. Then
we have

w({z/s}t)) = {z/w(s)}w(t)

and in this equation the substitution of x on the right side cannot lead to collisions, as
the applications of w and {z/s} on the left side cause none by Lem. A.18.
On the other hand, by definition we have

w({z stt) ={z w(s)}w(?).

and therefore (using Lem. A.14, which provides w(t') =p; w(t)) we have proved the
conjecture w(y) € Gp. O

To summarise this section, we have found a schematic formula G, that is closed
under f-substitutions w, as supplied by Lem. A.18, provided that the unique-flag of
#ct is false.

To stress the importance of the unique-flag, in the next example we also include
the schematic formula G}, C G, which is defined almost exactly as &,. The only
difference between &} and &y, is that for G} we require the unique-flag of #ct to
be true instead of false. G}, is closely related to the original substitution formula &,
defined in the beginning of Sect. 4.1: &}, does exactly contain the closed formulas of

S.

4.16 Ezample: Some formulas, and whether they are contained by the different substitution
formulas respectively:
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4. Construction of Proof Obligations

S Sm | &Y
{z cp(z) < plc) X X X
{z y}vy.p(z) < Vzp(y) X
Vy{z y}Vy.p(z) < Yy.Vz.p(y) X X X
({z c}p(x) Az cjp(x)) < (p(c) Ap(c)) X
({z ctp(x) Az clq(z)) < (p(e) A a(c))

The formula in the last line is not an instance of &, because the two substitution
operators are applied to different formulas, which is not covered by the definition of
Gum. *

4.5. An Example

We prove the schematic formula

P = Vi VHy #p — VH#yV#Hp  prefixy, = {#z, #y}

using a standard FOL set A’ of sequent calculus rules, by proving the proof obligation
within the sequent calculus Tass. The sequent calculus proof is then translated to
HTA (where A and A’ shall be equivalent according to Def. 4.11), and lifted to obtain
a proof for an instance of .

The proof obligation for 3, as defined in Sect. 4.4.1, is

¢po = L(P) = Ve Vy.psk(z,y) — VyVopsk(z,y), = {#x/x,#y/y, #p/psk(z,y)}

and is proved by

*
psk(d; c) F psk(d;c)
Vy.psk(d, y) F psk(d,c)
Va.Vy.psk(z,y) F psk(d,c)
Va.Vy.psk(x,y) b Ve.psk(zx,c)
Va.Vy.psk(z,y) = VyVe.psk(z,y)
F VaVy.psk(z,y) — VyVe.psk(z,y)

(close__goal)

(all _left)

(all _left)
(all_right)
(all _right)

(imp_right)

This Ta-proof is translated to the HT-proof H (see table 1) by replacing each rule
with an equivalent list of HT-rule applications (as in the proof of Lem. 4.13 about the
equivalence of the two calculi), which is basically the addition of an equivalent instance
of the meaning formula, sometimes however inserting substitution formulas or applying
the rule (Ex) (in Ta, both are assumed to be part of (all right)). As HT has its own
rules for propositional logic, it is not necessary to do anything for propositional sequent
calculus rules.

Comparing the HT-rule applications for the two applications of (all right), one can
see that different orders have been chosen respectively. While this has mainly been
done to make the following lifting process more interesting, and both translations have
the same length, there is of course an infinite number of further modifications, as HT
does not restrict the set of rules that may be applied in a certain situation at all.
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Ta-Rule ‘ Meaning Formula, Result ‘ HT-Rule
~(Vz.Vy.psk(z,y) — Vy.Vz.psk(z, y))
(imp_right) | (#p — #4q) V (#p A ~#q)
(no rule applications necessary)
(all_right) | 3#y.(~{#x #y}#pV V#z.#p)
Az.(~{y z}Ve.psk(z,y) V Vy.Vr.psk(z,y)) (Ax)+MF
Az.(—{y z}Ve.psk(z,y) V Vy.Vr.psk(z,y)) (Ex)
— (~{y c}Vr.psk(z,y) V Vy.Vr.psk(z,y))
{y e}Va.psk(x,y) < Vr.psk(z, c) (Ax)+Gmn
(all_right) | I#y.(~{#z #y}#pV V#z.4p)
Jz.(~{z z}psk(z,c) VVr.psk(z,c)) (Ax)+MF
Az.(—{z z}psk(z,c) VVz.psk(z,c)) (Ax)+Gy,
— 3z.(—psk(z,¢) V Vr.psk(z, ¢))
3z.(—psk(z, ¢) V Va.psk(z, ¢)) (Ex)
— (—psk(d, c) V Vz.psk(z, c))
(all_left) | -VH#z.#p Vv {#x #t}#p
—Vz.Vy.psk(z,y) V{z d}Vy.psk(z,y) (Ax)+MF
{z d}Vy.psk(z,y) < Vy.psk(d, y) (AX)+6n
(all_left) | =V#x.#pV {#x #t}#p
~Vy.psk(d,y) V{y clpsk(d,y) (Ax)+MF
{y c}psk(d, y) < psk(d, c) (Ax)+6n
(close_goal) | =#pV #p
(no rule applications necessary)

Table 1: The HT-proof H, and how it is obtained from the Ta-proof. In the left
column (going downwards) the rules applied in the Ta-proof are enumerated,
and the formulas next to the rule names in the middle column are the meaning
formulas of these rules, as defined in Sect. 3.3.2. The shaded entries below each
meaning formula contain the formulas added to the HT-proof to simulate the
particular Ta-rule application, and next to these formulas in the right column
the HT-rules used are given.
The topmost formula (of the middle column) is the negated proof obligation,
and the list of all shaded formulas of the table represents the complete (and
closed) HT-proof.
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4. Construction of Proof Obligations

To show how the HT-proof of the proof obligation is lifted to a proof of a second
instance of ¥, we consider the following instantiation

v = Kk(P) = Va.Vy.3z.q(z,2) — VyVe.3z.q(x, 2),
v =A{#x/x, #y/y, #p/Fz.q(x, 2)}

in which the variable z (which already occurs in H) has been inserted to provoke a
collision (according to the assumption in Sect. 4.4.2, in ¢ VariableSV are instantiated
with the same logical variables as in ¢yp,).

Proof H of pp, | Proof H' of ¢
—(Va.Vy.psk(z, y) — Yy.Va.psk(z,y)) —(Va.Vy.3z.9(, 2) — Yy.Vz.3z.9(x, 2))

Fz.(~{y z}Va.psk(z,y) V Vy.Va.psk(z, y)) Jz.(~{y z}Ve.Ju.q(z,uw) vV Vy.Ve.Ju.q(z, uw))
3z.(~{y z}Va.psk(z,y) vV Vy.Vr.psk(z,y)) Fz.(~{y z}Vax.Fz.q(x, 2) V Vy.Ve.3z.q(x, 2))
= (~{y c}Vae.psk(z,y) V Vy.Vr.psk(z,y)) = ({y c}Vz.I3z.q(x,2) vV Vy.Vr.Iz.q(z, 2))
{y cjVa.ps(@,y) — V.psi(e,c) {y c}Vz.3z.9(z,2) — Vz.32.9(x, 2)
Fz.(~{z z}psk(x,c) V Ve.psk(z,c)) Jz.(~{z z}Fv.q(x,v) vV Vz.Tv.q(x,v))
Jz.(~{z z}psk(x,c) V Vr.psk(z,c)) Fz.(~{z z}Fw.q(z,w) vV Vr.3w.q(z, w))

— 3z.(—psk(z, ¢) V Vr.psk(z, ¢)) — Fz.(-Fw.q(z,w) V Va.Jw.q(z,w))
3z.(psk(z, ¢) V Va.psk(z, ¢)) Fz.(—Fu.q(z,u) V Va.Ju.q(z, w))

— (—psk(d, c) V Vz.psk(z, c)) — (=Fu.q(d,uw) vV Vr.Ju.q(z,u))
—Va.Vy.psk(x,y) V {z d}Vy.psk(z,y) —Va.Vy.dz.q(z,2) vV {z d}Vy.3z.q(x, 2)

{o d}Vy.psi(@,y) < Vy.psk(d; y) {z d}Vy.3z.q(x,2) < Vy3Fz.q(d, 2)
~vy-psk(d,y) vV {y c}psi(d,y) ~vy.32.9(d; 2) V {y c}32.9(d; 2)

{v c}psk(d,y) < psk(d,c) {y c}32.9(d, 2) — Fz.9(d, 2)

Table 2: The original proof H of the proof obligation, and the lifted one of ¢. The
skolem formulas of the left side are shaded, and in the right proof they are
replaced with the concrete instantiations.

The f-substitution o defined in Sect. 4.4.2 is then given by

Ocont (pSk) - (EZQ(:E; Z)v <m7 y>)

and the proof resulting from the application of o (or an f-substitution in which bound
variables have been renamed) can be found in table 2. Reasons for renaming the
variable z bound in ¢ (and that also appear in this example) are:

e The definition of schema variables, which does not allow the instantiations of
VariableSV to occur bound within TermSV- or FormulaSV-instantiations (this is
enforced by Lem. A.18)

e Real collisions that may occur when substituting formal parameters (when ap-
plying f-substitutions).

4.6. Proving Schematic Formulas for JavaCardDL

Having seen a strategy to prove a certain kind of schematic formulas for FOL in
Sect. 4.4, we are now ready to treat a more complicated logic, namely JavaCardDL.
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Therefore we will use the additional schema variables of Sect. 3.2.2, and also introduce
some new kinds of rules that are necessary to handle dynamic logic.

Another method to create proof obligations for such kinds of JavaCardDL formulas,
which is similar to the method we will introduce, is outlined in [Hab].

The schematic formula 3 that is to be derived may be defined using the schema
variable types

e VariableSV, TermSV, FormulaSV, the types used for FOL

e PVariableSV, StatementSV, ExpressionSV and LabelSV, the most important
types introduced for JavaCardDL

and the set of axioms we are referring to shall be denoted by A (in the next section we
will define which kinds of axioms A is allowed to contain).

The remaining schema variables for contexts (within formulas and programs) we
will not consider yet, but explain later how to add them to the following method.
Furthermore we assume that Rem. 3.11, 3.20 and 3.17 hold, and that 8 does not
contain explicit logical variables, explicit bound program variables or explicit labels
(Rem. 3.19).

Again the calculus HT will be used to manage proofs, and the underlying principle
will be the same as in 4.4 (things will however get a bit more complicated, and some
details are different):

1. A proof obligation ¢y, is derived from the schematic formula .

2. ¢po has to be proved, and we assume that an HT g -proof H exists for a set
Agyi of axioms; in comparison with the basic set A, Agy contains additional
formulas determining the nature of skolem symbols that are needed to formulate
¢po- Beside that, in Agy the rules of A are adapted to the richer vocabulary.

3. The proof H is lifted to HT p-proofs H’ of each instance ¢ of 3, by replacing
skolem symbols that have been inserted into ¢pe, and doing some further mod-
ifications. This derived proofs do no longer contain any rules not present in A.
More formally, in the third step we show the implication??

'_ASk Ppo — l_A ‘,B (6)

4.17 Example: To motivate the following definitions, we demonstrate the derivation of the
proof obligation ¢, for a schematic formula ‘B, which is

P = (#s;H#v = #v;)#p < (#s)#p

where the appearing schema variables are

Symbol ‘ Type ‘ javaType ‘ unusedOnly ‘ prefix ‘ pvPrefix ‘ jumpPrefix
#s StatementSV {#v} 0

#v PVariableSV | int false

#p FormulaSV 0 {#v}

291f the used calculus is clearly determined by the context, we will write A instead of FuT, -
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4. Construction of Proof Obligations

As for FOL, to construct the proof obligation the schema variables of B3 are replaced
with skolem symbols. For FormulaSV and StatementSV, these symbols are now dis-
tinguished from the normal vocabulary of JavaCardDL (the definition can be found in
the next section). The PVariableSV is instantiated with an ordinary program variable,
and altogether the resulting formula looks like

©Ypo = (ssk(Vsk, t,d; throw t); vex = vsi;)psk(vsk) < (ssk(Vsk, t,d; throw t);)psk(vsk)

and has some more or less astonishing features (apart from being three times longer
than the schematic formula):

e As it has been announced, the PVariableSV has become a program variable,
which is nothing really exciting.

e The skolem symbols for the schema variables #s and #p have got the argument
vsk, which indicates that the variable vsy can occur within instantiations of #s
and #p (this follows directly from the values of the pvPrefix-properties). Note,
however, that the definition of the pvPrefix nevertheless allows further free pro-
gram variables beside vgk to turn up within these instantiations (and also see
footnote 14).

e The schema variable #s has got the very strange argument throw t (and the pro-
gram variable t, which is of type Throwable, occurs a second time on its own).
This mysterious statement forms the so called “jump table” of the symbol sgk,
which enumerates (exactly) those statements that may lead to an abrupt termi-
nation when executing an instantiation of #s. This list of statements corresponds
to the jumpPrefix property of StatementSV, and other possible elements of the
list are therefore statements like break, continue and return. An example with
two jump statements would look like

ssk(Vsk, t, d; throw t; continue).

e The skolem symbol sgk has a further argument d (which is a program variable of
type int), that will be used in combination with the “jump table” to control the
way of termination.

For the following, the skolem symbols within ¢p, are however not given possible
interpretations; we rather define “continuations” of the available calculus rules, in such
a way that it is possible to derive proofs for ‘B-instances from a proof of ¢p,. Thus the
argument throw t has the job to tell every rule that modifies the program block to act
“as if” the statement would contain a throw-statement.

Within a proof of the proof obligation ., performed using the calculus HT 5, ,
the skolem symbol pgi is mostly treated like a normal predicate symbol. Analogously,
ssk(Vsk, t, d; throw t) is in most situations regarded as a normal statement.

In the following sections, the main reason to furnish symbols with a jump table is the
definition of a decomposition rule, which splits the program block of a modal operator
in two blocks, whereby the first one contains the leading statement of the original
program block, and the second one all further statements. There are, however, other
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4.6. Proving Schematic Formulas for JavaCardDL

situations in which an explicit enumeration of the jump statements is necessary (but
that are not treated in this thesis), e.g. the rules that unwind loops, which also modify
break- and continue-statements of the loop body. *

4.6.1. The Axioms A

In the first place, namely in this section, we will define the set A of basic axioms, which
refer only to JavaCardDL. These axioms determine the derivability of the schematic
formula P that is discussed,

Far, ‘B

A does only consist of Formulas 9 that are defined (possibly) utilising all schema
variables of Sect. 3.2.3° We assume that Rem. 3.11 and 3.20 hold, that £ does not
contain explicit logical variables, no explicit bound program variables and no explicit
labels (see Rem. 3.19), and that for each ContextSV the unique-property is not true.

In Sect. 3.2.2, to define PVariableSV (schema variables for program variables) a set
PVar, of “unused” program variables is introduced. For the following sections, we
define this set to be

PVar, := U PVyp
TeJavaTypes

where each PV 7 is required to be an infinite set of program variables of type T', which
satisfies Def. 4.8 regarding the rules A (i.e. the variables are “unused symbols”), and
which is a maximal subset of the used vocabulary with this property.

Conversely, we define PVar, := PVar\PVar, to be the set of program variables that
in some way occur “explicitly” within an axiom, and that will have to be treated ex-
ceptionally. Most prominently, examples for such program variables are variables that
explicitly (and freely) occur within a taclet. Almost as bad are program variables oc-
curring (freely) in P (the schematic formula we want to prove), if ‘B is regarded as a
“real” formula containing schema variables (and not as a set of formulas as in Def. 4.1).
Thus we denote the set of these variables with E, and define

PVar.(B) := EU PVar,.

4.6.2. Skolem Symbols

In contrast to FOL, where we were able to use normal function and predicate symbols
for skolemization of TermSV and FormulaSV when formulating the proof obligation,
we will now distinguish specials sets of symbols as skolem symbols. These symbols are
treated in a well-defined way by the rules that are available to prove the formula ¢p,,
and are added to the original vocabulary given. We will denote the extended logic
by JavaCardDLgy, and the set of all term-like constructs (i.e. formulas, terms and
programs) of JavaCardDLgk by Syng.

To deal with the new symbols, it is also necessary to extend the set A of axioms
to a set Agk. Agk consists of continuations Qgx of the axioms Q € A (to reflect the

30Further kinds of axioms are discussed in Sect. 5.
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4. Construction of Proof Obligations

extended vocabulary of JavaCardDLgk) and some additional axioms Cgg, which are
introduced in detail in the next section:

Agr = {Qsk D Q|0 e A} UCsi.

The skolem symbols we introduce are:

e Sets Funcsky and Predsi of distinguished function and predicate symbols. Fur-

thermore we define a mapping of the two sets?!
PVArg : Funcsk U Preds, — Java Types™

(where “PVArg” stands for “program variable arguments”). We regard PVArg
as a part of the signature of the symbols Funcgk U Predsk, which as a whole is
based on the signatures ordinary function and predicate symbols have. Thus the
signature of a symbol fsx € Funcsk consists of

— a tuple of argument sorts and one result sort (for the set Predgsy, the result
sort is left out)

— the tuple PVArg(fsk) of Java types.

Accordingly, occurrences of a symbol sgx € Funcsk U Predgk are equipped with an
additional tuple of arguments. These arguments may only be program variables
which have exactly the Java type given by PVAry, i.e. in particular not complex
terms or expressions. We will use the notations

fSk : (Sly"'vsk:;Tla"'aTm) — S5 t= fSk(rla"'ark;Vla"'vvm)
for a symbol fsk € Funcsy with PVArg(fsx) = (T1,...,Tm), where rq,..., 1} are
terms and vi,..., vy are program variables. 71,...,r, can be compared to the

arguments of a normal function or predicate symbol.

Syntactically, the construct ¢ is regarded as a term of sort S, and analogously a
construct whose top-level operator pgx € Predgk is a predicate symbol is a formula.

The symbols Funcsx U Predgy, are used as skolem symbols for the schema vari-
ables TermSV and FormulaSV. For the proof obligation of example 4.17 we have
psk € Predsy.

A set Statementsy of symbols used to skolemize StatementSV, together with a
map
PVArg : Statementsy — JavaTypes™

which has exactly the same meaning as for the sets Funcsy and Predsk, and a
second map
JTSize : Statementg, — N

that determines the size of the jump table. PVArg and JTSize together form the
signature of elements of Statementsk. The notation we will use is

s = ssk(V1,. .., Vm; break; throw vy)

31By JavaTypes* we denote the set of finite sequences over JavaTypes.
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in which generally a list of program variables vy,..., vy, (as given by PVArg) is
followed by JTSize(ssk) statements (for s we have JTSize(sgk) = 2).

The statements that are admissible members of a jump table are

— return-statements, with or without an argument
— break- and continue-statements, with or without a label

— throw-statements.32

Informally the statement s from above could be described as: “An arbitrary
statement, in which the program variables v, ..., vy may occur (free), and which
can terminate abruptly only by executing the statements break or throw v;”.
We will however not define explicit semantics similar to this description. Instead
the set Agk, which is defined in the next section, contains axioms that reflect this
informal meaning of the symbols.

Syntactically, s is regarded as a statement, and within Java programs it is allowed
to occur at every position at which statements are allowed, and where additionally
each of the jump statements of s would not lead to static errors (e.g. because of
undefined labels). The following rules could be added to the Java grammar of
[GISBO0], in particular referring to Sect. 14.5:

Statement Without TrailingSubstatement:
SkolemStatement

SkolemStatement:
StatementSkolemSymbol ( IdentifierList,,, ; JumpStatementList,,; )

IdentifierList:
Identifier
IdentifierList , Identifier

JumpStatementList:
JumpStatement
JumpStatementList ; JumpStatement

JumpStatement:
BreakStatement
ContinueStatement
ReturnStatement
ThrowStatement

The symbols are very similar to the anonymous programs that are part of propo-
sitional dynamic logic (PDL), but have the additional features to handle abrupt
termination (and also update simplification).

o A set Expressiong, of symbols used to skolemize ExpressionSV, for which the map

32These are exactly the reasons that can lead to an abrupt completion of a statement, see [GISB00].
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4. Construction of Proof Obligations

PVArg is once more continued (and has the same meaning as for Statementsy),

but for which also a further map
RType : Ezpressiong, — JavaTypes

is defined, which determines the result type of an expression symbol. PVArg,
JTSize and RType together form the signature of elements of Expressiong.

The elements of Ezpressiong, can be occur at every position within a Java pro-
gram where a method call with the same result type would be allowed. The
following rules could be added to the Java grammar (Sect. 15.8):

PrimaryNoNewArray:
SkolemFExpression

SkolemExpression:
EzpressionSkolemSymbol ( IdentifierList,,, )

The four defined sets correspond to the schema variable types TermSV, FormulaSV,
StatementSV and ExpressionSV respectively, and the properties of the schema variables
are modelled by the introduction of the various signature extensions. StatementSV,
however, do not provide the possibility to include throw-statements in their jumpPrefix
(as shown in the example above for symbols of the set Statementsy). According to
Sect. 3.2.2, throw-statements can be regarded as implicit and omnipresent members
of a jumpPrefix, which are only modelled for statement skolem symbols with greater
accuracy.

By Symg, we denote the set of all introduced skolem symbols:
Symgy := Funcsik U Predsy U Statementsy U Ezpressiong,.

If the term “skolem symbol” is used in the following sections, we are always referring
to the symbols Symg,.

4.18 Example (Example 4.17 continued): For the skolem symbols in the example above, we
have

PVArg(ssk) = (int, Throwable, int) JTSize(ssk) = 1
PVArg(psk) = (int) *

33Tt would also be possible to equip expression symbols with a jump table, as it has been done with
statement symbols, to express the possibility of an expression to throw exceptions. This would
however be a somewhat inconsequential notation, as an expression cannot contain statements.
We will therefore assume that expression skolem symbols are implicitly and always able to com-
plete abruptly by exceptions, which are the only possible reason for the abrupt completion of an
expression, see [GJSB00].
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4.6. Proving Schematic Formulas for JavaCardDL

4.6.3. The Axioms Agy

As mentioned in Sect. 4.6.2, to prove the proof obligation ¢y, of a schematic formula ‘3,
the axioms A will on the one hand be adapted to the logic JavaCardDLgy enriched
by skolem symbols Symg,, and on the other hand we will add a number of further
rules Cgy:

Agy ={Qsk DO [ Qe A} UCg

First we describe the continuations of the axioms A. A does only contain schematic
formulas 9 € A that are defined using the schema variables of Sect. 3.2. To continue
these formulas, we first define a continuation of the predicates of Sect. 3.2 (which
distinguish valid instantiations of schema variables) to the additional syntactic con-
structs of JavaCardDLgy. This is achieved by replacing skolem symbols with surrogate
expressions of JavaCardDL:

Definition (Instantiations and Skolem Symbols): Let S = (#s1,...,#sy) be a tuple of
schema variables, and ¢ € Syng, an instantiation candidate. To decide whether ¢ is
a valid instantiation of S, we syntactically treat skolem symbols like the following
constructs of JavaCardDL:

e Function and predicate skolem symbols ssx € Funcsk U Predsy are regarded as or-
dinary function and predicate symbols, and program variables that are arguments
of sgk as ordinary terms:

SSk(Tl,...;Vl,...) = s(rl,...,vl,...)

e Expression skolem symbols egy € Statementgy are regarded as static method calls

esk(vi,...) — Object.f ( vy, ...)

e Statement skolem symbols sgkx € Statementsk are regarded as statement blocks,
containing a static method call and the jump statements

Ssk(Vi,...;8t1;...) — { Object.f ( vy, ... ); st1; ... }

¢ is a valid instantiation, if the instantiation ¢/, in which each skolem symbol has been

replaced with the corresponding JavaCardDL term, formula or program, is valid.
Additionally, for a ContextSV #s; = #ct; that has the SUL-flag set to true, in the

instantiation ¢(#ct;) no skolem symbol may occur above the symbol a,. *

For a formula € A we have Qg € Agy, where Qg is the set of instances of Q
within the extended vocabulary, following Def. 4.19.

Additional Axioms: Cgy

The definition of PContextSV implies that calculus rules for Java programs always
modify the leading statements within a program block. Unfortunately, the addition
of program skolem symbols would thus destroy the (relative) completeness of a set of
rules, because there are no rules to deal with them, should they appear in the beginning
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4. Construction of Proof Obligations

of a program. For an illustration, consider the proof obligation of example 4.17, which
is a formula similar to

(ssk(---); ) < (ssk(...); B)Y.

Using a decomposition rule (like the rule provided by classical dynamic logic), one could
replace this formula with

(ssk(- - )N (@) = (ssk(-- ) (B)Y

and then apply rewrite rules to the secondary program blocks, with the first ones being
a “prefix”, telling about a state possibly different from the top-level state. It would then
(hopefully) be possible to transform this equivalence into something obviously valid like

/

(ssk(-- )@’ = (ssi(...)¢'.

The current JavaCardDL calculus of the KeY system does not contain a rule equiv-
alent to the program decomposition rule of classical dynamic logic. Namely, from a
semantic point of view, decomposition operators in JavaCardDL have to deal with the
possibility of a statement terminating abruptly. This invalidates the naive equivalence
that is utilised by classical dynamic logic

(.. ;8 .0« (a)(.. B ..

For JavaCardDL, this equivalence only holds if the statement a does not complete
abruptly (and also provided that « is not a variable declaration). For most statements,
this cannot be guaranteed, however.

In the next paragraphs, we define a family of decomposition rules specifically for
statement skolem symbols, as well as rules that convert expression skolem symbols to
statement symbols. These rules cope with abrupt completion by applying a trans-
formation to the statement o = sgk(...). This transformation splits «a in two parts
a1 = sg(...) and g, such that the concatenation aq; s is equivalent to the original
statement «. Furthermore, the first program fragment «; is constructed in a way that
prevents abrupt termination, and thus the equivalence

(- ssk(-- )i B )@ o (Sgi( (e 03 B )ep. (7)

holds. For the rules we define the remaining part oo is rather simple, and it does in
particular no longer contain any skolem symbols, i.e. it is a pure JavaCard program.
Hence it is possible to handle ao by the application of JavaCardDL rules.

It needs to be stressed that the decomposition rules we introduce are exclusively used
to prove the proof obligation ¢p, of a schematic formula *B. The proof of ¢p,, on the
other hand, is only used as a template for the proofs of P-instances (as described in

the beginning of Sect. 4.6):

l_ASk SOPO — I_A (’B
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Thus we will not show the soundness of the decomposition rules, as we are not interested
in applications of the rules themselves. We will only assume (in Sect. 4.6.5) that for
each instance ¢ € ‘B it is possible to replace rule applications within the proof of ¢y,
with sequences of valid rule applications, only using the rules A.

Statements

To define the decomposition rule, first we have to formulate some requirements for the
set Statementgy (that are very specific for our situation, but can easily be generalised).
Namely, as in equivalence (7) two different skolem symbols ssk and sg, are related, we
also split the set Statementsyk in two parts, and define a mapping of symbols sgx onto
sg,- Beside that, to be able to construct the program fragment oy of equivalence (7),
we require all statement skolem symbols to have a distinguished argument of type int
(in example 4.17, this argument turns up as the program variable d):

e Statementgy is disjoint union of two sets
Statementsi = Statementg, U Statementg,, Statementg, N Statements, = ()
and we have a bijection Dec of Statementg, to Statements,:
Dec : Statementy, — Statementg,,.
We suppose that this map satisfies for each skolem symbol sgx € Statements,:
PVArg(Dec(ssk)) = PVArg(ssk) JTSize(Dec(ssk)) = 0.

Dec is continued on Statement, by Dec| Statements, = td.-

e For each sgk € Statementsk, the last program variable argument has type int:

PVArg(ssk) = (...,int).

For a symbol sgx € Statementgy, the decomposition axioms D7 and ’DSDSk are defined

analogously for diamond and box modalities.>* We show the definition of Doe:

Dig = #Ct((-- ssk(#v1, ... Fru FEstas .o #Esty); --'#pct>#p) =
#ct((Dec(sSk)(#vl, co FFu)s) (L dc ...#pct>#p)

where ic (which corresponds to s in equivalence (7)) is the following if-cascade,
in which at most one of the jump statements represented by the schema variables

#sty, ..., #sty is selected and executed, depending on the value of the last program
variable argument #u;:
{ if ((#u==1)
#st1;
else if ( #y == 2)
#sto;

34With schema, variables for modalities, it is of course possible to use a single rule for both cases.
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else if ( #v == 3)

else if ( #vy ==k )
#sty ; ¥
The schema variables are defined as in the following table (V := {#uvy,...,#v}):%

Sym. | Type javaType u.Only | prefix | pvP. | j.Prefix | unique | SUL
#ct | ContextSV false false
#pct | PContextSV

#p FormulaSV {#ct} |V

#v; | PVariableSV | PVArg(ssk); | false

#st; | StatementSV A% {#pct}

4.20 Example (Example 4.17 continued): We apply the rule D¢_ to the first program block

SSk
of the formula ¢y, in example 4.17:

©Ypo = (ssk(Vsk, t,d; throw t); vex = vsi;)psk(vsk) < (ssk(vsk, t,d; throw t);)psk(vsk)

<

s, 0 match the situation in this formula results in

Instantiating ©

U(Dgg,) = (ssk(Vsk, t, d; throw t); vk = Vsk;)psk(Vsk) <

(ssk (Vs t,d);)(if ( d == 1) throw t;vsk = vsk;)psk(vsk)

with sg, := Dec(ssk). This instance can be used to modify the formula ¢y, (which
would be done in the “destructive” calculus Ta), leading to

<S,Sk(VSk,t,d);><if ( d==1 ) throw t;vg, = VSk§>pSk(VSk) —
(ssk(Vsk, t, d; throw t);)psik (vsk)

The second program block (beginning with if) does not contain skolem symbols any-
more (the program variable vgy is not a skolem symbol as defined in Sect. 4.6.2), it
is therefore possible to apply further rules (provided that rules exist that handle Java
programs). *

Expressions

For expression skolem symbols, the same problem as for statement symbols might arise
if such a symbol occurs within the first statement of a program block. It is therefore
also possible to apply the same solution, which will be realized in two steps: First we
provide rules that replace expression skolem symbols egx with statement symbols sgy,
to which then the already defined rule ©,, may be applied. The rules to handle
expression symbols are specifically designed for the case of a program block, whose
first (active) statement is the assignment

35 At this point the explicit restriction could be added that the StatementSV #st1,. .., #st; may only
be instantiated with suitable statements, namely only with jump statements that are allowed as
arguments of statement skolem symbols.
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x =egkx (... );

i.e. the value of an expression having an expression skolem symbol as top-level operator
is assigned to a program variable. The decision to concentrate on statements of this
kind was made because of the design of program rules in KeY, which handle complex
expressions by evaluating subexpressions in the correct order, and assigning the results
to (new) program variables. Iterated application of such rules leads to elementary
assignments of “atomic” expressions to program variables (like the assignment from
above), as well as assignments of expressions containing exactly one operator, whose
arguments are program variables.

The following rule is therefore sufficient to achieve (relative) completeness only for
certain systems of rules for complex expressions3® For other systems, it would be nec-
essary to modify the rules or add further ones.

For the given example, the result of the rule application would look like (we assume
that the result type of egy is int)

{

int r;

Throwable t;

int d;

ssk (..., r, t, d; throw t );
X = r1;

In this code fragment, the result of the computation performed by egk is no longer
transferred as the result of an expression, but using an explicit program variable r,
and the throw-statement (which was implicit for the expression symbol) is now added
explicitly. The argument d is to be used by the statement rules from above.

Again we require the sets Statementsy and Expressiong, to meet certain conditions:
A map Stmt is needed to map expression skolem symbols egy onto statement skolem
symbols sgkx = Stmi(esk), and the compatibility of the argument types of sgx has to be
ensured:

e The map Stmt is an injection of Ezpressiong, into Statementg,
Stmt : Expressiong, — Statements,
and satisfies for each esk € Ezpressiong:

PVArg(Stmit(esy)) = PVArg(esk) - (RType(esy), Throwable, int )37
JTSize(Stmit(egk)) = 1.

36We are not considering the concrete rules of the KeY system in detail at this point, as these rules
are currently the object of too frequent modifications to make such considerations useful.
3"By a - b we denote the concatenation of two tuples a and b.
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For each expression symbol egx € Ezpressiongy, the decomposition rules D¢ and

D¢, are defined; we will again show the definition of D¢, for diamond modalities:

’DZSk = #ct((.. #x = egk(#v1, ..., #v)); ...#pct>#p> — #ct((.. sb ...#pct>#p)

where sb is the statement block as in the example (T := RType(egk) is the result type
of BSk)

{
T #r;
Throwable #t;
int #d;
Stmt(esk) ( #v1, ..., #u, #r, #t, #d; throw #t );
#r = #r;
}

and the schema variables are defined as in the following table, where we use the abbre-
viation V := {#vy,..., #v;, #x}:

Sym. | Type javaType u.Only | prefix | pvPrefix | unique | SUL
#ct | ContextSV false false
#pct | PContextSV

#p FormulaSV {#ct} | V

#v; | PVariableSV | PVArg(esk); | false
#2%8 | PVariableSV | RType(esx) | false
#r PVariableSV | RType(esk) | true
#t PVariableSV | Throwable | true
#d PVariableSV | int true

Altogether, we have

Csk := {D%,,, D5, | ssk € Statemently } U{D , DL, | esk € Ezpressiong,}

SSk’ €sk’

4.6.4. Definition of the Proof Obligation

As in Sect. 4.4.1, we define the proof obligation by instantiating schema variables of 3.
Unlike the situation for FOL, however, we need more than one instance of 3, to cover
different possible instantiations of PVariableSV. Namely, it is possible that

e two PVariableSV (that do not have the unusedOnly-property set to true) are
instantiated with the same program variable3’

38We define #z to have exactly the result type of esy; one could, more generally, also allow #z to
have any type to which the type of esk may be assigned statically. As in KeY PVariableSV are
currently untyped, practically we even allow any type for #x.

39This exceptional case is mainly critical for free PVariableSV, as the instantiations of bound ones can
always be renamed. For most real applications of taclets, dealing with multiple program variables,
it is probably necessary to require distinctness in any case, which however cannot be expressed
using the taclet mechanism of KeY (currently).
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e a PVariableSV is instantiated with a program variable of PVar.,*® or an explicit
program variable occurring in 8 (which can only be a free program variable).

4.21 Ezample: Instances ¢(3) of the schematic formula
P=(#i=0#j=1)#i =0
are valid for ¢(#1) # 1(#7), and invalid otherwise. *

4.22 Ezample: Instances ¢(Q) of the schematic formula

are valid for ¢(#1) # j, and invalid otherwise. *

Therefore we distinguish these cases, and create an instance @%O = 1;(*P) of P for
each of them. We could assume that each instance has to be proved separately, i.e.
that we are given a set {H; | i € I} of proofs, and would then even be able to treat
situations in which there are infinitely many different cases. For practical reasons,
though, this is of little importance, and we will assume I to be finite, and define the
complete proof obligation by

Ppo ‘= /\ (Pi)o-

i€l
Therefore we start with the instantiation of PVariableSV of 3, and each instanti-

ation ¢ € Jpvariablesy Obtained in this first step will subsequently be continued to an
instantiation of all schema variables.

Instantiation of PVariableSV: Jpyariablesv
Let #v1,...,#v; be the PVariableSV of ‘B3, and let

P :={vy,...,vx} C PVar,\PVar.(P)

be k distinct program variables, where each v; shall have the same Java type as
#wv;. The instantiations Jpvariablesy Of the PVariableSV are then all instantiations of
#uv1, ..., #v, with elements of P U PVar.() that are consistent with the definitions
of PVariableSV (especially regarding the properties of #uvy, ..., #vg).

This simple construction creates more instantiations than necessary; from two in-
stantiations ¢, K € Jpvariablesv, One may be removed, provided that

e . and x instantiate the same PVariableSV with elements of PVar.(), and for
L(#v;) € PVar.(P) we have o(#v;) = rk(#v;)

e ; and « instantiate the same PVariableSV equally, i.e. we have

U#vi) = (#v)) <= K(#vi) = K(F#0;).

40A realistic example for this situation would be the existence of a taclet describing the effect of a
Java method, which could include the modification of a class attribute. The program variable
representing this attribute would then require unusual treatment. This observation also has to be
considered when dealing with meta operators for the expansion of method bodies.
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From a theoretical point of view, there is no need to remove unnecessary elements
of Jpvariablesv (as long as the set stays finite), whereas practically one would try to
make Jpvariablesv @s small as possible, and use a more intelligent (and complicated)
construction.

4.23 Ezample (Example 4.21 continued): For the formula B of example 4.21, and assuming
that we have
PVar, = PVar.(B) = {a}

and a, #i, #; all have the same type, the chosen instantiations Jpvariablesy Would be

‘ L1 L9 L3 Ly Ly Lg L7 Lg L9
#i|vy vi Vi Ve Vo Vg a a a
# _] \'Al \'P) a V1 \'%) a Al \'P) a

To minimise Jpvariablesv, it would be sufficient to consider the instantiations ¢, o, t3,
L7, tg, as the others differ only insignificantly. *

Instantiation of Bound Schema Variables: J,
For each ¢ € Jpvariablesy, in the next step we instantiate two further kinds of schema
variables of 3 and create the continuations x € Ja:

e VariableSV #wv are instantiated with arbitrary distinct logical variables that have
the same sort as #v (as in Sect. 4.4.1 for FOL)

e Label schema variables are skolemized exactly like VariableSV (which follows
from the fact that the definitions are almost identical): LabelSV are instantiated
with distinct labels.

There cannot be any collision, as neither explicit logical variables nor explicit labels
are allowed to occur in 3.

Instantiation of the remaining Schema Variables: J

For each ¢ € Jo, we choose the remaining instantiations, and obtain the final x € J:
To skolemize the four schema variable types TermSV, FormulaSV, StatementSV and

ExpressionSV, the skolem symbols introduced in Sect. 4.6.2 are used. Namely, for

each schema variable #a of these types, we first define a set Py, of relevant program

variables, which consists of

e the already chosen instantiations ¢(#v), for each PVariableSV #uv of the pvPrefix
of #a

e the elements of PVar.(})

o if #a is a StatementSV, we add two program variables t4, € PVar, of the Java
type Throwable and d4, € PVar, of type int, not yet occurring anywhere. The
variable t4, is necessary because the pvPrefix property of StatementSV lacks a
throw-statement (see Sect. 3.2.2), and we therefore have to add one at this point,
and need a suitable argument. The second variable d, is needed to ensure that
the signature of the skolem symbol to be introduced fulfils the assumption of
Sect. 4.6.3, namely that the type of the last program variable argument has to
be int.
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To give the elements of P, an ordering, we arrange them as a tuple p4, = (vi,...,v),
such that the variable d,, if existing, is the last component of p,.

In any case, for the skolem symbol sﬁka for #a we will then choose
PVArg(st®) = (Th, ..., T})

where T1,...,T; are the Java types of the components vi,...,v; of pu,. The final
instantiation is determined as:

o If #a is a TermSV or FormulaSV, it is instantiated as in Sect. 4.4.1, except that
we use a new (i.e. not already used as instantiation of another schema variable)
element sfka of Funcgy or Predsyk instead of a simple function or predicate symbol,
and that it is given the program variables of P, as additional arguments, which
altogether looks like

K(#a) = sééka(ml, ey TRV, ey V)
(x1,...,z as in 4.4.1)

o If #a is a StatementSV, we first define a set 'i‘#a of jump statements (the state-
ments are mostly derived from the jumpPrefix of #a), to be the smallest set
with:

— Ty4(t) C Ty, Note that Ty,(t), which is defined in Sect. 3.2.2, does only
depend on the instantiations of PVariableSV and LabelSV*!

— throw ty, € 'i‘#a, where t4, is the program variable defined above.

#a is instantiated with the skolem symbol sfka € Statementg,, which is again
supposed to be new, and must not be an element of the image of the map Stmt,
i.e. must not be a symbol that is used to transform expression skolem symbols to
statement skolem symbols as defined in Sect. 4.6.3. For sﬁka we choose

JTSize(s5") = |Tal-
The instantiation of #a is
_ JHa Cere
/ﬁ)(#a) = Sgk (Vl, ey VIS 7Sk:)
where {s1,...,s:} = 'i‘#a
e If #a is an ExpressionSV, #a is instantiated with a new expression skolem sym-

bol sfka € Ezpressiongy. RType(sfka) is the type given by the corresponding prop-
erty of #a. The instantiation of #a is

k(#a) = sB0(viy ..., v1).

41 Apart from PContextSV, but such schema variables are not allowed for 3.
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The Proof obligation ¢,
As already mentioned above, the proof obligation ¢, is chosen referring to the deter-
mined set J of instantiations:

¥po = /\ L(B)-

ed

The next two sections treat the extraction of concrete proofs (i.e. for arbitrary in-
stances of ) from a proof of the proof obligation. Therefore, first we have to formulate
two requirements that are needed to translate the decomposition rules of Sect. 4.6.3.

4.6.5. Assumptions about Java

In the previous sections, skolem symbols for Java code fragments as well as rules Cgy
to deal with these symbols were introduced, without saying anything (substantial)
about the semantics of the symbols or the soundness of the axioms. We could think of
statement skolem symbols as some kind of anonymous program, to be interpreted by
an input/output relation (and something additional, telling about abrupt completion),
and see that the rules preserve consistency.

We will rather give an indirect argument for the soundness of the rules, namely by
requiring the rules to be sound after having replaced the contained skolem symbols
with suitable Java code fragments.

Statements

The intention of the following assumptions is that it shall be possible to transform
Java statements into equivalent statements, in such a way that its behaviour regarding
abrupt termination can be controlled. As an example, the statement

s = ssk(V1, ..., Vm; break)

should handle modifications that are applied to the jump statement break in a faithful
way. The statement
s' = ssk(vi,...,vm; break 1)

is expected (informally) to behave like s, except that each time s completes abruptly
by executing break, s’ should execute break 1. This postulation is inherited to state-
ments by which sgi can be replaced. Within the following paragraphs, we justify the
existence of statements satisfying this demand, which are thus possible substitutions
for ssk, and outline an effective method of replacement. For that, we introduce three
mappings Norm, Normpe. and Norm,, which “normalise” arbitrary Java statements to
meet our requirements.

Let o be a JavaCard statement respecting scopes, and T = {s1,...,;} be a set
of statements (all not containing skolem symbols or method—frames), such that «
is compliant to T regarding termination behaviour (following Def. 3.14). The free
program variables of a and those of the elements of T shall be subsumed by vq, ..., vg.
Further let my,...,m;y; be [+ 1 distinct labels, d be a program variable of type int,
and t a program variable of type java.lang.Throwable, all not occurring in « or T.
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We assume that two Java statements
Norm(a) = Norm(a, d, t,my,...,m41), Normpec(a) = Normpee(a,d, t)
exist, such that
1. Norm(a) and Normpec () respect scopes, and do not contain

e method—frames

e free symbols beside the symbols that also occur in «, except from the pro-
gram variables d, t:

FS(Norm(a)) C FS(a) U{d,t}, FS(Normpec(a)) C FS(a) U{d,t}
(F'S as introduced in Sect. A.2 for arbitrary JavaCardDLgy statements).

Furthermore the sets F'S(Norm(«)) and F'S(Normpec(a)) of free symbols do not
contain

e labels

e skolem symbols.
And finally the statement Normpec() is termination compliant to ().4?

2. For each formula ¢ that does not contain skolem symbols or the program variables
d and t, and each formula ¢’ that is obtained from ¢ by replacing a number of
occurrences of a by m(Norm(«)) =: Norme(«):

FaT, 0 o ¢
where 7 is the parameter substitution (these substitutions are defined in Sect. A.2)
m={mi/s1,...,my/s;,m;+1/throw t}.

This means that the statements o and Norm(«) are treated as equivalent by the
calculus HT 4, if the original jump statements are inserted into Norm(a).

3. The statement decomposition axioms of Sect. 4.6.3 become derivable, if the con-
tained skolem symbols are replaced with Norm(a) and Normpec(«). This means
(very informally) that the equivalence

(.. Norm(a) ...)¢ < (Normpec(c))(.. ic ...)p

(in which ic is the if-cascade as in Sect. 4.6.3) is valid. To decompose a program
block, it is then possible to replace the statement Norm(a) with Normpec(«),
and the assumption guarantees that no problems regarding abrupt termination
arise.

2By Def. 3.14, this means that Normpec(c) can only complete abruptly through an exception.
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e Lete € {0,...,k} and sgx € Statementg, be a statement skolem symbol with
JTSize(ssk) =1+ 1 and

PVArg(ssk) = (Th,...,Te, Throwable, int)

where 17, ..., T, are the types of the program variables vi,..., v,

e Suppose o is the s-substitution that replaces the skolem symbols sgx and
Dec(ssk) (the symbols occurring in a decomposition axiom of Sect. 4.6.3)
with Norm(a) and Normpec (o) respectively:

Ocont (sSk) == (No’r‘m(a), <V17 o 7V67t7 d7m17 o 7ml+1>)
Ocont (Dec(ssk)) = (Normpec(a), (vi, ..., Ve, t,d))

(0, Ocont as in Def. A.21)

e Suppose ¢ € D, is an instance of the axiom D,y (for diamond or box
modalities), which does not contain any skolem symbols except sgx and
Dec(ssk), and such that an s-substitution w =y, o exists that can be applied
to ¢ without collisions*3

e Finally, our assumption regarding Norm(«), Normpec(«) is
FaT, W(P)-

4.24 Ezample: We illustrate the three items of the assumption, to demonstrate that the
assumption is justified:

1. In the next paragraphs, one possible derivation of the statements Norm(a),
Normpec(a) is performed for the following statement «, in which v is supposed
to be a program variable of type int:

{ if (v==20)
return 3;
else
continue loop;
idle : { break idle; }
throw new Exception (); }

a is compliant to (as exceptions are not considered for compliance following
Def. 3.14, and the target of the break-statement lies inside «):

T = {continue loop, return r},

where r is a program variable of type int. Thus altogether there are two program
variables, i.e. k =2 and v =1, vo = v. The set T is regarded as ordered, namely
we denote the elements by si,ss as above. We choose the [ + 1 = 3 labels that
are required above simply to be m;, ms, m3, and call the two additional program
variables d and t. Normpec(«) is obtained by

“3As Cod(o) does not contain labels or logical variables, a sufficient condition for that would be that
¢ must not contain bound program variables which are also elements of Cod (o).
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e enclosing a by a try-block labelled with exit, catching everything

e replacing representatives of statements of the set T within « (according to
Def. 3.14) by statements that trigger a “clean” (i.e. not abrupt) comple-
tion of «, and assign the variables d, t appropriately. For the statement
continue loop, which is the first statement s; of T, this replacement would
be

{ d = 1; break exit; }

The resulting statement Normpec () is

{ d=0;
exit : try

{ if

[N
I
—

break exit; }
idle : { break idle; }

{

vV =

{d = 2; r = 3; break exit; }
{

throw new Exception (); }
} catch ( Throwable e ) {
d =3;t =¢e;

ro

Note that the target of the jump statements “break exit” that have been inserted
lies inside of Normpec(r), and thus Normpec(«) is termination compliant to ().

To construct the statement Norm(«), the if-cascade which is defined in Sect. 4.6.3
for the statement decomposition rule D, is added to Normpec(a). The schema
variables of the if-cascade are instantiated with the variable d and the labels
mp,mg, mg3 (the instantiation of the schema variables reflects the definition of
parameter substitutions in Def. A.19):

{ Normpec ()
if (d==1)
m1 : skip;
else if ( d == 2)
msy : skip;
else if ( d == 3)
ms : skip; }

2. If the parameter substitution 7 is defined as in the assumption above, then the
statement 7(Norm(«)) will be

{ Normpec ()
if (d==1)
continue loop;
else if (d == 2)
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throw ¢t ; }

which is (semantically) equivalent to the original statement «, except that the
program variables d, t are modified.

3. To demonstrate the last assumption, we choose e =1 (i.e. the second variable v
will be removed) and consider the instance

Y= <(55k(h,t,i; break loop;return h;throw t);)true) — ((s’Sk(h,t,i);><z’c>t7’ue)

of 7 . Compared to the statement 7(Norm(«)) of the last item, in this formula

program variables have been renamed and jump statements have been modified:
vi—h, dr~—1i, continue loop— break loop, return r+— return h.

ic once again is the already well-known if-cascade, which is also instantiated with
the new program variables and jump statements:

{ if (1==1)

break loop;
else if (1 == 2)
return h;
else if (i == 3)
throw t ; }

If the s-substitution w is defined as described and applied to ¢, the statements
containing ssk and sg, are replaced with

{r/h,t/t,d/i,m; /continue loop, my/break loop, ms/return r} Norm(«a),
{r/h,t/t,d/i} Normpec(c).

It can be observed that the replacement of the skolem symbols sgk, sg, exactly
matches the chosen if-cascade ic (regarding program variables and jump state-
ments), which is obtained by the instantiation of schema variables. The reader
can also ascertain that the JavaCardDL formula w(y) is valid. *

Expressions

As for statement skolem symbols, we show that there are suitable JavaCard expressions
and statements that can be used to substitute expression skolem symbols. Therefore,
we continue the maps Norm and Normpe. that are defined for statement skolem symbols
to expressions skolem symbols.

Let v be a JavaCard expression of type T’,, which does not contain skolem symbols,
and whose free program variables are subsumed by the variables vy, ..., vg. Moreover
let r be a program variable not occurring in 7, which is also of type T’,.

We assume that there is a JavaCard statement «, such that

1. « is termination compliant to the empty set, and does not contain free symbols
beside those that occur in 7, except for r:

FS(a) C FS(y)U{r}

Furthermore F'S(«) does not contain any labels or skolem symbols.
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2. According to the previous part of this section, the following two statements exist
for a:
Norm(v) := Norm(«), Normgep(y) := Normpec(a).

We assume that the expression “normalisation” axiom D, for an expression
skolem symbol esx becomes derivable, if we substitute the expression v and the
statement Norm(y) for the skolem symbols in this axiom. The following con-
struction is very similar to the one already given for statement skolem symbols:

o Let e € {0,...,k} and esk € Ezpressiong, be an expression skolem symbol
with
PVArg(esk) = (11, ..., Te)

where 17, ..., T, are the types of the program variables v1,..., v,

e Suppose o is the s-substitution that replaces the skolem symbols egy and
Stmit(egk) (the symbols occurring in an expression axiom of Sect. 4.6.3) with
~ and Norm(y) respectively:

Ucont(eSk) = (77 <V17 e 7V€>)
Ocont (Stmt(esk)) = (Norm(y), (v1,...,Ve, 1, t,d,m))

(0, Ocont as in Def. A.21, and t, d, m = m; as in the previous section)

e Suppose ¢ € D, is an instance of the axiom Dy (for diamond or box
modalities), which does not contain skolem symbols except eskx and Stmit(esk),
and such that an s-substitution w =p; o exists that can be applied to ¢ with-
out collisions**

e Finally, our assumption is

|_HTA W(SD)'
4.25 Example: Again we illustrate the two items of the assumption by considering an ex-
ample:
1. We show one possible construction of the statement « for the expression
a + 2x(0.b)
which contains the two program variables a, o (logically the attribute b is not
treated as a program variable, but as a unary mapping of the class of o, see

[Bec01]). The corresponding statement « is simply obtained by assigning the
value of v to the program variable r:

r = a + 2x(0.b)

2. The derivation of the statements Norm(y), Normpec(y) as in example 4.24 results
in

44 Again, a sufficient condition would be that ¢ must not contain bound program variables which are
also elements of Cod(o).
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{ d=0;
exit : try {
r = a + 2x(o0.b);
} catch ( Throwable e ) {
d =1; t = e;

b}

as Normpec(y), and analogously Norm(v) is the statement

{ Normpec(7)
if (d==1)
m : skip; }

As an example we consider the following instance ¢ € @ESk of an axiom as defined
in Sect. 4.6.3:

0= ([ x = egk(a,0); ]false) — ([ sb ]false)
where sb is the statement block
{
int r;
Throwable t;
int d;
Stmt(esx) ( a, o, r, t, d; throw t );

X = r;

}

Substituting the original expression v and the statement Norm(v) in ¢ leads to
the formula

p= <[ x = a + 2x(o.b); ]false) — ([ sb ]false>
where sb is the statement

{

int r;
Throwable ¢t ;
int d;
{ d = 0;

exit : try {
r = a + 2%(o.b);

} catch ( Throwable e ) {
d =1; t = e;

if (d—=——1)
throw t; }
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4.6.6. Lifting Proofs

Remember that the proof obligation ¢p, of the schematic formula ‘B is defined to be
the following conjunction:
¥po = /\ LPB).
edJ
As in Sect. 4.4.2, we are assuming to be provided a closed proof H of this proof
obligation

_'Q0p05¢1" .. 7’(/%

using the calculus HT s, , as well as an instance ¢ € P (which is supposed to be
formulated using the original logic, i.e. not containing any of the skolem symbols of
Sect. 4.6.2)*° that is to be proved using the calculus HT 5. As before, we achieve
this by replacing skolem symbols in H with the instantiations that define ¢ = (),
followed by some further transformations, and showing that this modifications lead to
a new proof still correct.

Preliminaries
We start by selecting the part ¢(3) of the proof obligation we are interested in (or:
that we have to use), which is the one that has

e the same PVariableSV instantiated with (the same) elements of PVar.(B) as ¢,
ie.

L(#u) € PVar.(P) <= u(#u) € PVar.(P),
L(#u) € PVare(P) = (#u) = p(#u)

e the same PVariableSV instantiated equally, i.e. we have
() = L) = p(u) = p().

Such an instantiation ¢ must have been used to construct a part of ¢y, because p is
by assumption a valid instantiation (according to the schema variable definitions in
Sect. 3.2), and in Sect. 4.6.4 we demanded to cover all possible combinations regarding
the PVariableSV instantiations.

Ezample (Example 4.23 continued): We consider the instantiation py = {#i/a, #j/t}
of the schema variables of example 4.23, where a € PVar, and t € PVar, is a fur-
ther program variable. Of the instantiations ¢; of example 4.23, ¢7 and g would
then be admissible choices for the following consideration. For a second instantia-
tion pe = {#i/t, #j/t}, we would choose ¢1 or 5. *

We have

~po == N\ 7(B) =0 \/ ~7(B) =0 ~uP) v (\ ~m(P))

TeJ weJ eI\t

451t should not be difficult to remove this restriction, but we try to simplify the following proof.
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and if the formulas of H

_'90P07¢17' . 71/)16

are propositionally unsatisfiable, then so are

_\L(%)flpla s ﬂﬂk

which means that from H we can derive a proof H of ¢y := t().

To make the argumentation easier, we will make some assumptions that can always
be established by minor modifications of H:

We will treat all instantiations of PVariableSV regarding . and p as equal.
Namely, if the instantiations ¢(#v) # u(#v) are unequal for a PVariableSV #uw,
then we have ((#v), u(#v) € PVar,\PVar.(B) (this is guaranteed by the choice
of ). Therefore ¢(#v) and p(#v) occur in @y, only as instantiation of PVariableSV
or as an argument of a skolem symbol, introduced for the proof obligation and
another schema variable. By renaming program variables in the whole proof H
it is then possible to identify the instantiations.*6

Asin Sect. 4.4.2 (because HT allows bound renaming), we can assume VariableSV
to be equally instantiated.

Additionally, LabelSV can be assumed to be instantiated equally (by the same
considerations as for VariableSV).

If the instantiation of a TermSV, FormulaSV, StatementSV or ExpressionSV #a
in ¢ contains program variables which are not the instantiations of elements
of the pvPrefix of #a, and which are not elements of PVar. () either (this can
happen, following the definition of the pvPrefix in Sect. 3.2.2), then these program
variables are supposed not to occur in the proof H or in the instantiation ¢. This
is no restriction, as such variables have to be elements of PVar,\PVar.(), and
occurrences can therefore be renamed.

Constants ¢ € C(gy) introduced by the rule (Ex) in H do not occur in ¢; this can
be established by renaming those constants in H, using Def. 4.8.

This means that the “only” schema variable types that need to be considered are the
types TermSV, FormulaSV, StatementSV and ExpressionSV. As in Sect. 4.4.2, we will
now define an s-substitution o (such substitutions are introduced in Sect. A.2), that
replaces those skolem symbols which are used to define +() = @po as part of the proof
obligation with the concrete instantiations of pu.

To avoid collisions, subsequently we derive from ¢ and for each formula £ of the
proof H an s-substitution 0¢ =pr 0. Applying these particular substitutions to the
formulas of H will give us the sequence of formulas

_'Sp;oalbll,- .. 7"/Jllc

46More exactly, we are able to permute +(#v) and p(#v) in the whole proof H (also using Def. 4.8),
and after finitely many transpositions all PVariableSV instantiations of  and ;1 are equal.
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with & := 0¢(£). In general this sequence is not yet an HT o-proof, as the formulas
will usually not be the results of valid rule applications. Within the remaining part of
this section, we will show that nevertheless the following propositions hold:

1. The set {—¢po, 1, -, } is propositionally unsatisfiable
2. There is an (usually not closed) HT s-proof H,
_‘SD? C{? MR C;L

that entails ﬂgo;o propositionally
{_'903 C{’ s 7C7,L} Fo _'QD;O

3. Each formula 1] can either be introduced by a HT 4-rule application, or there is
a closed HT o-proof Hy, of ¢;.

Using Lem. 4.14 it is then possible to combine the proofs H, and the formulas 1} (or
the corresponding proof ng), preserving the unsatisfiability of the original sequence of
formulas, and obtain a closed HT p-proof H' of . Namely, without loss of generality
the rule applications by which the formulas ¢} (or the proofs H,) have been created
stay valid:

e Applications of the rule (Ax) are always valid, as the set A of axioms is not
modified

e Applications of (Ex) can always be made valid by renaming introduced constants,
referring to Def. 4.8 and the definition of A in Sect. 4.6.1.

Definition of the s-Substitutions o

As in Def. A.21 and for FOL, we will define ¢ through a map ocont- For StatementSV
and ExpressionSV, not only the skolem symbols of the proof obligation itself will be
replaced with the concrete instantiations from ¢, but also the symbols used by the
rules Cgi (that are given by the maps Dec, Stmt). Additionally, the instantiations
from ¢ will in this case be “normalised”, referring to Sect. 4.6.5.

We are aiming at an application of Lem. A.36 about the application of s-substitutions
to instances of schematic formulas, which will provide the s-substitutions o¢ =y, o,
if o is compatible with the formulas { (and compatible with the instantiations each
formula ¢ is originating from, see Def. A.34). As a premise of compatibility, o must
in particular be collision preventing regarding these formulas (Def. A.28), and thus we
will consider this feature for each of the following items.

e For a TermSV or FormulaSV #a, instantiated with T' = u(#a) in ¢, and with
L(#a) = sﬁka(xl, e TV, e, V)
In Ppo:
Jcont(sﬁka) = (T, {(x1, ..., Tp, V1, .o, V)
Note that, because of the definitions of schema variable types in Sect. 3.2, T
cannot contain free logical variables except x1,...,z,. Moreover, free program

variables of T except v1,...,v; do not occur in any formula of H (by assumption),
which is the premise of Def. A.28.
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e For a StatementSV #a, instantiated with o = pu(#a) in ¢, and with

L(#a) = sééka(vl, o Vi b, duggs S15 - - S throw ty,)

in Ppo (w.l.o.g. the program variables and statements appear in this order within
t(#a)): Because « is a valid instantiation of #a, it respects scopes and is termi-
nation compliant to the set Tyq(1) = {s1,...,s} of statements. Namely, in any
case this set is also the set derived from the jumpPrefix of #a as described in
Sect. 3.2.2, because ¢ and u are equal restricted to VariableSV and LabelSV.

« may again contain free program variables beside vy, ..., v,, that do however not
occur in any formula of H. By assumption, in particular the program variables
t4q, dyq do not occur in «. Furthermore variables of the statements s1,...,s;
have to occur within vy,...,v, by Rem. 3.17.

Providing labels my, ..., m;y; (and the variables t4,, dy, already existing), the
assumption regarding Java statements in Sect. 4.6.5 then furnishes us with state-
ments Norm(a)) and Normpec(a) that we use for ogopnt, and that make o collision
preventing, regarding each formula of H:

Ucont(sg#ka) = (Norm(a), (Vi,...,Vr, tya, dgq, m1, ..., my41))

acont(Dec(ssgka)) = (Normpec(), (vi,. .., vy, bpa, dga))

Note that this definition implies
o(t(#a)) = Norme(«)

where Normc () is the statement defined in Sect. 4.6.5 (we are going to refer to
this property later).

e For a ExpressionSV #a, instantiated with v = p(#a) in ¢, and with

(#a) = Zr (v, V)

n Ppo: As always, 7 may contain further program variables, not occurring in any
formula of H.

Providing program variables ru,, t4q,d4, and a label m = m;, again Sect. 4.6.5
guarantees the existence of statements Norm(vy), Normgep(v) (and again o is
collision preserving, particularly as a Java expression cannot contain labels):

(77 <V17 e 7V7’>)
(Norm(7), (V1, ..., Vr, Tga, tsa, dgqe, m))
(Normgep (), (V1, -+ s Vi, Tta, ttar Aea))-

Ocont (eﬁka)
Ocont (Stmt(e?ka))
Ocont (Dec(Stmt(efka)))

By the definition of the proof obligation ¢p,, the s-substitution o is well-defined (i.e.
no skolem symbol occurs more than once within the items above), and it is also collision
preserving regarding each formula of H. There may however be further skolem sym-
bols sgkx € Symgy, possibly also occurring within formulas of H, e.g. symbols that are
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not introduced by the instantiation ¢ (or indirectly through the maps Dec, Stmt), but by
another instantiation used to define ¢p,. These symbols cannot occur in @, = ¢(B) (as
they show up neither in 9B nor in ¢), and we can choose (almost) arbitrary substitutions
to get rid of them:

e Function or predicate skolem symbols can be replaced with constants (which
exist, as they are needed by the rule (Ex)) or atoms like true

e Expression skolem symbols egk, and the symbols Stmi(esk), Dec(Stmit(egk)) that
are associated with egx can be replaced with suitable literals v, and the state-
ments Norm(7), Normgep(7y) provided by Sect. 4.6.5

e Analogously it is possible to replace statement skolem symbols sgk, Dec(ssk)
with the statements Norm(a), Normpec(«) that are provided in Sect. 4.6.5 for
the neutral statement a = skip.

The s-substitution o is collision preventing regarding the formulas of H, in particular
program variables of Cod(c) do not occur in H. Tt is possible and still necessary to
rename bound symbols of ¢ suitably, to make the applications of o collision free. This
is achieved by defining an s-substitution o¢ for each formula £ of H, mostly using
Lem. A.36.47

e For formulas £ that are introduced by the rule (Ax) and a formula Q € Agk\Csk
containing schema variables, i.e. £ = (), where

n={#s1/a1,. .., #sr/ar}

is an instantiation of the schema variables of : We use Lem. A.36. Unfortu-
nately, it could happen that o is not collision preventing regarding an instan-
tiation «; (which is a premise of Lem. A.36), namely Cod(o) could contain a
program variable v occurring in oy, but not in £.48 In this situation, we can ob-
serve that v € PVar,\PVar.() (this holds for all program variables of Cod (o)),
and that it is therefore possible to replace v by a “new” variable u, creating a new
instantiation 7" with 1(Q) = n(Q) = £ (as v did not occur in &, after all).

We can thus assume that o is collision preventing regarding F := {£, a1, ..., ax}.
By the definition of the statements Norm(«), Normpec(c) that are substituted
by o for statement skolem symbols (or indirectly for expression symbols), o is
even compatible with F (see Def. A.34 for this term). The remaining premises of
Lem. A.36 are implied by the definition of A (£ does not contain skolem symbols
of Symg, ), and Rem. 3.5.

Lem. A.36 does then provide the s-substitution o¢ := w we will use for &.
e For the first formula —@p, = —¢(P) of H, we construct O-pp, €xactly the same

way as in the first case, replacing £ by B and 1 by ¢. This time, the conditions
of Lem. A.36 hold because of the restrictions made regarding ‘3.

47Tt would as well be possible to choose a single substitution w for the whole proof, but renaming per
formula seems to be the easier way.
48This case can be constructed using a ContextSV without the unique-property.
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4. Construction of Proof Obligations

e For all other formulas £ (e.g. created by the rule (Ex)), we use Lem. A.29 to
obtain an s-substitution o¢ := w that can be applied without collisions to §.

As it has been expected, we are now able to use the substitutions o¢ to define the
sequence

s Y15+ 5 U
by 1 := oy, (i) and =@l 1= 0-5,,(7Ppo) (as for FOL).

The Set {0, %1, -- -, } is propositionally unsatisfiable
This follows exactly as for FOL, only using Lem. A.30 instead of Lem. A.14.

Construction of the Proof H,,

Contrary to the situation in FOL, the formula ¢y, is actually quite different from the
formula ¢ we are really interested in. This is our own fault, as we didn’t just use the
instantiations o = p(#a) of StatementSV #a from ¢ to define the substitution o, but
“normalised” statements Norm(«) instead. Fortunately, in Sect. 4.6.5, as part of the
definition of Norm(«), the possibility to replace o with Norm(«) was demanded. We
will use this knowledge to construct the proof H,, satisfying

{_‘()07 C{a e 747/1} ':0 _“P;O'

To exchange the statements, let #sq,...,#s, be the StatementSV of 3, and let
a; = u(F#s;) fori € {1,...,k} be their instantiations in ¢. We construct a list po, . . ., fg
of instantiations with u = pg to replace a; with Norm(«;) successively, such that

po(P) = ¢, 11 (B) =br Ppo

Therefore we refer to the statements Normg(ay), ..., Norme(ay) that are derived
in Sect. 4.6.5 from the statements Norm(aj), ..., Norm(ag). The instantiations
1o, - - -, 1 are defined by

pi(#s;) = Norme (o) for j <i
wi(#a) = u(#a) for all other #a,

i.e. each yu; instantiates the first ¢ schema variables #s1, ..., #s; with normalised state-
ments, and all other schema variables with the original instantiations determined by
1.

The first requirement () = ¢ follows directly from poy = p. For the second one,
1 (B) =br Ppo, We will again use Lem. A.36. By the construction of o-z,, =: w and
the lemma, the formula ¢}, is an instance of p:

- (%) .
¥po = W(Ppo) = w(L(P)) = w(P),  with w,(#a) = w((#a)),

where (x) uses Lem. A.36. To show that the two instances () and ¢, (P) are
equal modulo bound renaming, we can thus consider the instantiations u; and ¢,.
Namely, it can be observed that the instantiations g (#a) and ¢, (#a) of each a schema
variable #a are equal modulo renaming:*°

49We are implicitly using Lem. A.30.
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For a TermSV or FormulaSV #a:

w(L(#a)) = w(sh (@1,...5v1,...) =br p(#a) = ux(#a)

For a StatementSV #a = #s;, using the observation o (t(#s;)) = Norme(c;) that
was made when defining o

w(t(#si)) =br Norme(ci) = pg(#si)

For an ExpressionSV #a:

w(u(#a)) = w(sgl (Vi) =br p(#a) = p(#a)

For other kinds of schema variables, by assumption and construction u, pr and ¢
are equal.

By Lem. 2.3, and because instantiations of StatementSV respect scopes, this entails
that the formulas px (%) and w((P)) = ¢}, are also equal modulo renaming:

(for each #a: pur(#a) =pr Lw(#a)) = wk(P) =br L (P).

Finally, we refer to the assumption of Sect. 4.6.5, which gives us for ¢ € {1,...,k}

FaT, Hic1(B) < wi(B),

because each instance u;(8) can be obtained by replacing occurrences of «; within
pi—1(P) with Norm(«;). Hence for suitable ({,..., (), that can be created by applica-
tions of HT p-rules, we have

{Cire e a1t Fo pica(B) = i(P).

Obviously the following derivation holds

{0 (10B) = 1 (). (1(B) = 12(B) ) (11 (B) = 1 (P)) | Fo ~ho

and by replacing each equivalence with its particular HT o-proof (using Lem. 4.14),
renaming constants introduced by the rule (Ex) upon collisions, the proof H, emerges

_|SD7C{"" ’CT{Z'

The Formulas ¢, ..., 9,

The remaining proposition we need to show is that each formula ¢} = oy, (1;) either
results from a valid HT -rule application, or can at least be proved using HT o (the
first case is actually subsumed by the second one, except for the rule (Ex)). Different
situations may occur, again depending on the way a formula 1; was introduced in the
original proof H:
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82

e The rule (Ax) has been used, together with a formula Qgx € Agk\Csk containing

schema variables, i.e. 1; € Qgk. Then Lem. A.36 tells us that ¢} = oy, (1) is
also an instance of gy, and as ¢ has been defined to replace all skolem symbols
by constructs not containing skolem symbols, ¥, € Q is even an instance of the
axiom 9 € A corresponding to Qs

The rule (Ax) has been used, together with a formula 9 € Cgy, which is a de-
composition axiom either for statement symbols Statementsy or for expression
symbols Ezpressiong,. Contrary to the situation in the first case, thereby we
cannot apply Lem. A.36 directly, as Q contains symbols of Dom(c). Both pos-
sibilities (i.e. statement and expressions symbols) can be treated simultaneously:
In any case we will construct an HT o-proof of ¢] by referring to the assumptions
made in Sect. 4.6.5:

Let Q =D or Q =DF , as defined in Sect. 4.6.3. The axiom £ contains two
distinguished skolem symbols, namely the symbol sgy itself, and the symbol to
which sgi is “normalised” by Q. We define a set S that consists of these two

symbols:

— If sgk € Statementgy is a statement symbol, we have S := {sgk, Dec(ssk)}

— Otherwise sgx € Expressiong, is an expression symbol, and then we choose
S = {ssk, Stmi(ssk)}-

The set T is defined to consist of the remaining symbols of the domain of the
s-substitution w := oy, which are T := Dom(w)\S. From Lem. A.27 and the
definition of w, it follows that w can be decomposed into

w = wl|g ow|r.

Contrary to o, for w|T Lem. A.36 is applicable, because the major obstacle,
namely the symbols S, have been removed. By this lemma, for a particular
s-substitution m =p, w|T we therefore have 7(¢;) € Q.

The only skolem symbols remaining in 7(v;) =: 6 are the symbols of S, and the
s-substitution w|g is exactly the substitution o defined in Sect. 4.6.5 (either for
statement or expression skolem symbols). By renaming bound program variables
of PVar, in 6 (see footnote 43 on page 70) and arbitrary bound symbols in wlg,
it is then possible to choose a formula 6’ =y,  with ' € , and an appropriate
s-substitution v =p; wl|g, such that v can be applied to 6’ without collisions.
Finally, by the assumption of Sect. 4.6.5, we have

|_HTA l/((g/).

Repeated applications of Lem. A.30 reveal that v(0") and ¢, = w(¢);) are equal
modulo bound renaming, and are therefore not distinguished by HT A :

'_HTA rlzz)z,

e The rule (Ex) has been used: Then we can use exactly the reasoning as for FOL

(in Sect. 4.4.2), if Lem. A.16 in this reasoning is replaced with Lem. A.32.



5. Proof Obligations that Treat Further Aspects of
JavaCardDL

In Sect. 4.6, the only axioms Agk, A that were considered as elements of the proofs H
(of the proof obligation ¢p,) and H' (of an instance ¢ € P of the schematic formula 9 to
be proved) were those that can be formulated using schema variables. Axioms defined
this way are insufficient even for FOL (where it is necessary to have a supplementary
rule to apply object-level substitution operators), and for JavaCardDL several further
rules, e.g. for updates are needed. We will give a concise discussion of some of these
rules.

5.1. Further Kinds of Rules

First we describe the general method that is used to introduce new axioms R, for which
the reasoning of Sect. 4.6 needs to be adapted. We assume that A and Agy are sets of
axioms for the logics JavaCardDL and JavaCardDLgy respectively, for which the lifting
process of Sect. 4.6.6 can be performed. To add new schematic formulas R to the sets
A, Agy, we are requiring in any case

e The sets C(gy) of constants for the HT-rule (Ex) and PVar, of program variables
fulfil the condition formulated in Def. 4.8 regarding {2}, i.e. the elements of C gy,
and PVar, can still be regarded as unused symbols.

After having extended the set A to a larger set A D A, it is necessary (at least
usually) also to add new axioms to Agk to achieve completeness. Beside the condition
regarding skolem symbols for each schematic formula PRgx € ASk\ASk that has already
been given, we are demanding for the new set Agk D Agi:

e For a formula v € Rgi € ASk\ASk and an s-substitution o, which is collision
preventing regarding v and can also be applied to v without collisions,® such
that o(vy) does not contain skolem symbols of Symg:

Far; o(v).

A sufficient condition for this is o(y) € R € A.

This second requirement guarantees that an application of the rule Rgi € ASk\ASk
within the proof of a proof obligation ¢, can be lifted to a proof step of an in-
stance ¢ € B.

If these two requirements hold for the sets A D A, ASk\ASk, then the argumentation
of Sect. 4.6.6 can as well be performed, i.e. we also have

FASk Ppo — }_A B

for a schematic formula P as in Sect. 4.6 and the proof obligation ¢p, of B.

50Collision prevention is introduced in Def. A.28, and is not implied by the fact that the application
of o is collision free.

83



5. Proof Obligations that Treat Further Aspects of JavaCardDL

5.1.1. Substitutions

It is necessary to have rules for applying substitutions which are expressed by the
object-level substitution operator
{z t}T.

The formula introduced in Sect. 4.4.3 for FOL is hardly appropriate for JavaCardDL,
as it does not prohibit non-rigid terms to pass modalities within 7" like updates and
program blocks, semantically spoken. In the KeY system, there is in fact a second
(object-level) substitution operator {- -}, which resolves the problem by identifying
modalities and non-rigid terms, and uses an alternative method of application for this
critical case ({- -} can only be applied to formulas ¢):

{x thpp < Jz.(x =t A @).

Like the application of the normal substitution operator, this method can be de-
scribed by an axiom &% € A for JavaCardDL. To define a corresponding schematic
formula &g, that can be added to Asy, and which satisfies the requirements formu-
lated in the beginning of 5.1, it is necessary also to regard function and predicate
skolem symbols sgx € Funcsk U Predgix as modalities. Namely, by an s-substitution o
these symbols could be replaced with formulas or terms containing modalities, e.g.

ssk(t) V% (a)t =0, with  o(sgk(x)) = ()z = 0.

As the term ¢ turns up within the scope of the modal operator («) in the resulting
formula, the symbol sgk also has to be regarded as a modality (in the example affecting
the term t).

5.1.2. Updates

As it has been done for substitutions, it is necessary to provide an axiom i defining
admissible transformations of updates

({v:i=e}p) < ¢ or ({v:i=e}t) =t

and simultaneous updates (which will not explicitly discussed in the following para-
graphs, but to which the same arguments apply). To extend these transformations of
updates to terms and formulas containing any of the skolem symbols of Symg,, it is
again (as for substitutions) essential to consider the situations that can arise from the
replacement of these symbols, as it is performed by an s-substitution o

e The substitution of function and predicate skolem symbols can introduce modal-
ities, e.g.
ssk(t;v) s ()t =v

It is therefore not sound to let updates pass below any skolem symbol, only
applying the update to the arguments of the symbol:

Fx 0({V 1= e}ssk(t;v) o ssk({v :=e}t; {v := e}v))
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5.1

5.2. Further Types of Schema Variables

e An s-substitution o that replaces a skolem symbol sgx within a formula ¢ can
introduce (free) program variables w that did originally not occur as arguments
of sgk. As o is collision preventing, these variables w do not occur in ¢, however
(see Def. A.28). As an example, we consider the formula

o ={w :=e}ssk(v).

Because ¢ contains the program variable w, we have w ¢ Cod(o) for all relevant
s-substitutions o. Therefore it can be guaranteed that the program variable w is
not introduced (as a free variable) upon the replacement of sgx. A suitable rule
for update simplification could thus remove the update because of

Fa o({w :=e}ssk(v)) < o(ssk(v))

where o is a collision preventing s-substitution.

5.2. Further Types of Schema Variables

The kinds of schema variables described in Sect. 3.2 are not sufficient for a complete
treatment of JavaCardDL: Practically and in the KeY system several additional types
are defined, usually to be used for very specific tasks. The procedure to allow axioms
which are defined referring to such additional types within the sets A and Agy essen-
tially consists of an according enhancement of Lem. A.36, which is the most important
tool in Sect. 4.6.6 for modification of proofs.

5.3. Contexts

The attentive reader has noticed that discrepancies exist between the definition of
meaning formulas for taclets (Sect. 3.3.2) and the requirements made regarding those
schematic formulas that can be proved, and those that may be used as axioms within
those proofs. Namely, in Sect. 4.6 we demand for ContextSV that either the unique-flag
is false, or that there are no such variables at all. We will give some simple lemmas
to resolve these problems, showing that the restrictions of Sect. 4.6 pose no loss of
generality. All propositions of this section refer to the schema variables defined in 3.2.

The first lemma shows that it is possible to remove the unique-flag from ContextSV in
many cases, in particular for rewrite taclets that only have one replacewith-statement:

Lemma (Non-unique Contexts): Let A be a set of schematic formulas, and
PB:=  #ct(Ty) — #ct(Tz) €A

where #ct is a ContextSV with the unique-flag set to true, and 77, 75 do not contain
free PVariableSV for which the unusedOnly-flag is true. If #ct’ is a new ContextSV
with the same properties as #ct except for the unique-flag (which is false for #ct’),
and ‘i? is obtained from ‘3 by replacing #ct with #ct’, then

'_HTA q3 *
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5.3

5. Proof Obligations that Treat Further Aspects of JavaCardDL

Proof: By applying ‘B repeatedly with different contexts. Suppose that ¢ is an instan-
tiation of B, and we have ¢’ := ((#ct’) (the formula ¢’ can contain multiple insertion
points ayey). If T} := «(T1), Ty := 1(T>) are the instances of 77,75 respectively, and
we write

T,Z)(TL) := JContextsV (¢aTL)

for the instantiation of a ContextSV, then we have
{v1(T7) = ¥1(Ty), ha(T1) — Y2(T3), -, u(TY) — ¥u(Ty)} Fo ¢/(T1) — 9/ (T3)
where the formulas 11, ...,1; are chosen such that
P (T1) =br L1(T1), Y1(T5) =br V2(T1), - -, Yi(T5) =br ¢ (T5).

This can be achieved by an appropriate (successive) replacement of insertion points a..
within ¢/ either with 7} or with T%. This replacement can in general only be performed
if Ty, T5 do not contain free PVariableSV for which the unusedOnly-flag is true, be-
cause (by the definition of PVariableSV) instantiations of such schema variables must
not occur within the instantiation of the ContextSV #ct. O

Remark: The lemma is also applicable for formulas P = #ct(1}) < #ct(T3), and the
proposition of the lemma does also hold for formulas P’ containing B as a sub-formula,
with positive polarity (such that propositional junctors are the only operators occurring
above P3), provided that #ct only occurs in . *

Presumed that A contains axioms to handle equations (and equivalences, which
can be treated exactly the same way, but are not mentioned explicitly in the next
paragraphs), namely the formulas

&1 = F#ct(F#t = #t) — F#ct(true)
€y = #t1 = H#iy — (F#ct(#11) < Fct(#12))

(where at least for €, the SUL-flag of the variable #ct has to be true) then it is possible
to generalise Lem. 5.1, making it applicable also for meaning formulas of taclets with
multiple replacewith-statements. For that, we can first observe that Lem. 5.1 can be
applied to &;, € (by Rem. 5.2). Hence the variable #ct in these formulas does not
need to have the unique-flag being true.

Lemma (Non-unique Contexts II): Let A be a set of schematic formulas that contains
€1, &5, and P a schematic formula, defined through schema variables, in which the sub-
formulas 91, ..., occur with positive polarity and only below propositional junctors.
Suppose that these formulas are given by

Q; = #ct(t) < #ct(ti)
such that

o #ct is a ContextSV, for which the unique- and SUL-flags are true, and that does
only occur in the formulas Qy,...,Q (and not within ¢,¢y,..., k)
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5.4

5.3. Contexts

e t does not contain free PVariableSV, for which the unusedOnly-flag is true

e #ct does not occur within the value of any prefix-property of the schema variables

of P.

If #ct’ (as in Lem. 5.1) is a new ContextSV with the same properties as #ct except for
the unique-flag (which is false for #ct’), and OB is obtained from P by replacing #ct
with #ct’, then

Far, P *

Proof: We consider an arbitrary instantiation ¢ of the schema variables of P’, and
construct an instantiation x for B by

)t =aga for #s = #ct
wl#ts) = {L(#S) otherwise

where t' =y, 1(t) is chosen such that « is a valid instantiation (i.e. bound symbols of ¢’
do not occur as instantiations of other schema variables; this can be enforced by bound
renaming).

Then we have

R(Qi) = (' =u(t) & (¢ = u(ts))
and using instances of &; and &, (we write ¥(T) := Joontextsv (L(#ct'), T))

{r(Qi), V' =t true, t' = u(t;) — (V) = P(u(ti)) } Fo () < P(u(t:)-

-~ -~ -~

e €& =(9)

As the formulas £; have positive polarity within 8 and occur only below propositional
junctors, it is then possible to “replace” x(9Q;) with ¢(Q;) within () by propositional
transformations, and thus

I_H'TA L(‘B) O
Ezample: Consider the taclet tg

find(#t) replacewith(0) add(#t=0 F );
replacewith(#t) add( F #t =0)

which has the meaning formula (Sect. 3.3.2)
M(te) = ((#ct(#t) o #ct(0)) A Ht = 0) v ((#ct(#t) o het(F#t)) At = 0).

By Lem. 5.3, the value of the unique-flag of the variable #ct in this formula has no
influence on the validity of the formula. *

The axiom €3 can also be used to eliminate ContextSV #ct from meaning formulas
of taclets, provided that the SUL-flag of these variables is true, and that #ct does not
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occur within prefix-properties.®’ By the same reasoning as in the proof of Lem. 5.3, it
follows that in this case sub-formulas

#ct(A) — Fct(B;)

(as they occur in meaning formulas) can be replaced with simple equations or equiva-
lences

Finally, for contexts #ct for which the SUL-flag is false, and for meaning formulas
of taclets that only possess a find- and one replacewith-statement, the following
equivalence can be used:

FA=B <= F #ct(A) — #ct(B).

51Otherwise it is nevertheless possible to use a semantic argument, namely that free variables can
always be replaced with constants, to remove #ct in such situations.
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6. Conclusion

In Sect. 4 we have described two construction procedures for proof obligations of taclets,
which treat first-order logic and JavaCardDL, respectively. We have shown that for
both of the methods the derivability of the proof obligation implies the reproducibility
of the corresponding taclet.

In any case, the procedure which ensures the soundness of a taclet essentially consists
of the following three steps:

1. The meaning formula 3 of a taclet ¢ is instantiated with skolem constants, func-
tions, predicates and programs. The resulting formula ¢y, is the proof obligation
of the taclet t. This step is computable and can be performed automatically.

2. A proof of the formula ¢p, has to be furnished using a certain calculus. This step
has to be performed either interactively by the user, or by an automated prover.

3. The reproducibility of the taclet ¢ is shown, by constructing sequences of rule
applications (using rules that are known to be sound) that have the same effect
as applications of t. This step has to be performed only once for a given procedure
for the creation of proof obligations ¢y, and the necessary reasoning for the two
procedures that are introduced in this thesis are contained by Sect. 4.

As part of the minor thesis, the method to compute proof obligations (Step 1) has
been implemented for JavaCardDL and for the prover of the KeY system. This im-
plementation differs from the considerations in this document regarding some details,
however:

e In the KeY system, the definitions of the schema variables are not completely
equivalent to the definitions given in this document

e The KeY system provides (a lot) more kinds of schema variables than treated
in this thesis. While also not handling all available schema variable types, the
implementation still addresses more types than this document.

Both implementation and document cannot be regarded as complete treatments of
taclets, as they exist in the KeY system. It has therefore been tried to make the
reasoning of Sect. 4, as well as the implementation as modular as possible to allow
extensions that cover further aspects.
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A.1

A. Substitutions

A. Substitutions

A.1. Substitution of Functions and Predicates

In this section, we define a family of substitutions that do not map variables to terms, as
usually, but instead function and predicate symbols to terms and formulas, replacing
formal parameters with terms given as arguments (i.e. “call-by-name”). The substi-
tutions can be seen as higher-order substitutions that replace function and predicate
variables (the arguments of symbols that are replaced are only terms, i.e. only first-
order, however). It is always possible to reduce normal substitutions of (free) logical
variables to the substitutions defined in this section, by replacing free variables with
constants.

Ezrample: To the formula
Vz.p(f(a,h(z)))

we apply a substitution that replaces the binary function f with the term g(h(y),x),
whereby = and y are be the formal parameters and represent the first and second
argument of f respectively. The result is the formula

Vz.p(g(h(h(2)), a))-

A.2 Definition (Free Symbols): For a term or formula 7', with F'S(T") we denote the set of

function or predicate symbols as well as free variables occurring in 7. *

A.8 Ezample: For the term from the example A.1 we have

A4

FS(g(h(y), x)) = {2,y,9, h}.

To distinguish ordinary substitutions of logical variables from the new kind of sub-
stitution we are going to introduce, we will call the former ones v-Substitutions within
the whole appendix A (substitutions of variables).

Definition (f-Substitution): An f-substitution o (substitution of functions) is a map
o : TermU For — Term U For
such that there is a map??
Ocont : Func U Pred — (Term U For) x Var*
(the “content” of o) satisfying

e each function symbol f € Func with signature (Si,...,S;) — S is mapped onto
a pair (¢,{(x1,...,xk)), where t is a term with sort S and z1, ...,z are distinct
variables (the formal parameters), whose sorts are Sy, ..., S respectively

e analogously, each predicate symbol p € Pred is mapped onto a pair (¢, (x1,...,zk)),
where ¢ is a formula

52By Var* we denote the set of finite sequences over Var-
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A.1. Substitution of Functions and Predicates

o for almost all symbols s, ocont(s) = (s(x1,...,2zk), (T1,..., 7)) (i.e. essentially s
is mapped onto itself)

e o is the application of o.unt to terms and formulas:

— For function or predicate symbols s:

o(s(riy...,rx)) ={x1/o(r1),...,xx/o(rk)}T
where Ocont(s) = (T, {x1,...,2k))

(the substitution in this formula is a v-substitution of logical variables).

— All other constructs (like variables, quantifiers, ...) are handled faithfully,
i.e. as a homomorphism.

Conversely, for each map o¢ont satisfying the conditions of Def. A.4, a corresponding
map o can be constructed inductively.

A.5 Ezample (Example A.1 continued): For the f-substitution o applied in example A.1,
we have

ocont(f) = (9(h(y), ), (z,y))-

A.6 Remark (Notation): For nullary function or predicate symbols s1, ..., s; we will use the
same notation for f-substitutions as for v-substitutions:

{Sl/tl, .. .,Sl/tl}

A.7 Definition (Domain and Codomain): Let o, ocony be as in Def. A.4. As usually (see
for example [SA94]) we define the domain Dom(o) of o to be the set of function or
predicate symbols not mapped onto themselves, and the codomain Cod(o) of o by

Cod(0) = U FS(a)\{z1,...,xx}.

s€Dom(o)
(a, (@1, T ))=0cont ()

A.8 Lemma (Free Variables and f-Substitution): Let o, ocont be as in Def. A.4, and let them
satisfy the following equivalent conditions:

1. For each symbol s with o¢ont(s) = (a, (x1,...,2%)): FV(a) C {z1,..., 2%}
2. Cod(o) N Var=1
Then for each formula or term T: FV(o(T)) C FV(T). *

A.9 Definition (Bound Renaming of f-Substitutions): Let ocont and weony be contents as in
Def. A 4. ocont and weont are called equal modulo bound renaming, if for each symbol s
with ocont(s) = (a, (z1,...,2k)), wWeont(s) = (b, (y1,...,yk)) the formulas (or terms)

{z1/21,. . 2 /ze}a and  {y1/z1,...,yk/21 10

are equal modulo bound renaming. Thereby z1, ..., 2 are distinct variables not occur-
ring in a or b, which have the same sorts as x1,...,xx, and the applied substitutions
are v-substitutions.

f-Substitutions ¢ and w are called equal modulo bound renaming, if there are contents
Ocont and weont as in Def. A.4 which are equal modulo bound renaming. *
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A.10 Definition (Collisions): Let o, oeont be as in Def. A.4. The application of o to a term

or formula T is called collision free, if for each symbol s with ocont(s) = (a, (z1,...,zk))
e No element of FV(a)\{z1,...,x;} is bound at an occurrence of s in T’
e The v-substitution of the variables x1,...,x; in Def. A.4 is collision free for any

occurrence of sin T

A.11 Ezample: We demonstrate the two kinds of collisions for the f-substitution ¢, which is
determined by

Ocont(P) = (Vy.r(x, 2), (x)), Dom(o) = {p}, Cod(o) = {r,z}

where p (resp. r) is a unary (resp. binary) predicate, and x,y, z are logical variables.
An example for the first type of collision in Def. A.10 is the application

o(3z.p(a)) = 3z.Vy.r(a, 2)
in which the binding of the variable z is altered. The second kind of collision occurs in

a(p(y)) = Vy.r(y,z)

as the free variable y of p(y) is moved into the scope of Vy.

It can be observed that if the application of an f-substitution o to T is collision free,
then the application of ¢ to any sub-term or sub-formula of T" will not cause collisions
either. *

A.12 Lemma (Collision Free f-Substitutions): Let o be an f-substitution for which the con-
ditions of Lem. A.8 hold, and T a term or formula. Then there exists an f-substitution
w, that is equal to ¢ modulo bound renaming, such that the application of w to T is
collision free. *

A.18 Remark: In general (i.e. if the conditions of Lem. A.8 are not fulfilled) Lem. A.12 is
wrong, as it is usually also necessary to rename bound variables within 7. A simple
example is the following application of a f-substitution:

{a/x}Vz.p(a).

A.14 Lemma (Renaming Everything): Let S and T be terms or formulas which are equal
modulo bound renaming, and ¢ and w be f-substitutions which are also equal modulo
bound renaming. If the applications of o to S and of w to 1" are collision free, then
o(S) and w(T) are equal modulo bound renaming. *

f-Substitutions that only replace nullary function and predicate symbols mostly be-
have like v-substitutions of logical variables. In fact the only difference is that the
elements of the domain of an f-substitution cannot be bound by operators, contrary to
logical variables. For the following two lemmas we will call an f-substitution of nullary
symbols, i.e. an f-substitution o with

for each s € Dom(o) : s is nullary

a nullary f-substitution. Because of the similarity of nullary f-substitutions and v-
substitutions, the next lemmas hold for both likewise.
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A.15 Lemma (Concatenation I): Let o be a v-substitution or a nullary f-substitution, 7" a
term or formula, y1, ..., y; either distinct variables or distinct nullary function or pred-
icate symbols, and w = {y1/t1,...,y;/t;} a v-substitution or a nullary f-substitution.
Provided that

e the application of w to T does not cause collisions and
e FS(T)NDom(o) C{y1,...,u}

we have
ow(T)) =v(T) where v={yi/o(t1),...,y1/o(t;)}.

Lem. A.15 does not hold if the application of w leads to collisions, in general. A
counter example is

{z/cHy/x}veply) # {y/c}Vep(y).

Proof: First we can observe that both for v-substitutions and nullary f-substitutions
K1, ko we have

k1(p) = ko(p) <= for each s € FS(p): Ki(s) = Ka(s).53 (8)

This equivalence does not hold for f-substitutions that also replace symbols which are
not nullary, however. Information about the property for v-substitutions, which also
applies to nullary f-substitutions can be found in [Fit96].

Suppose o and w are as in Lem. A.15. We show the conjecture by structural induction
over T' = op(r1,...,7Tn):

e Forop=vy; € {w1,...,u}:

o(w(T)) = o(ti) = v(yi) = v(T)

e For op ¢ {y1,...,y;} D Dom(w): Then we also have op ¢ Dom(c), because oth-
erwise op € F'S(T) would violate the premise of the lemma.

o(w(T)) =o(w(op(ri,...,rm)))

=o(op(w1(r1),...,wn(rn))) op may bind variables
= op(o1(w1(r1)), .-y on(wn(rs)))
=op(v1(r1),. .., vn(ry)) Claim (i)

=v(op(r1,...,mn))
In this derivation the substitutions o;,w;, v; arise by the restriction of o,w, v to
symbols not bound by op within the ith sub-term or sub-formula.

To prove claim (i), we show the equation

oi(wi(ri)) = vi(ri)

53We assume that for symbols s € F.S(yp), for which k1,k2 are not defined as maps, we have
k1(s) = k2(s) = L. This applies to function and predicate symbols occurring in ¢ that are not
nullary, but that are also contained by F'S(p) (see Def. A.2).
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for each i € {1,...,n}. B shall be the set of symbols that are bound by op at the
ith argument. Without loss of generality we have

Bn{yi,...,ui} ={v1,- - Ye—1}, with eec{l,...;1+1},

i.e. op binds (exactly) the first e — 1 variables of {y1,...,y,} D Dom(w) (if w is
an f-substitution, than e will be 1 as op does not bind any constants).

We can apply the induction hypothesis at this point, as the presumptions of
Lem. A.15 are fulfilled: The application of w; to r; is collision free, and

FS(r;)NDom(c;) C (FS(T)UB)N (Dom(c)\B) C {ye,...,u}-
This leads to
oi(wi(ri)) = oi{ye/te, - yi/ti}ri)

= {ye/ai(te)a--'ayl/Ui(tl)}Ti by IH
={ye/o(te),-..,y/o(t)}ri Claim (ii)
= v;(ri)

To show claim (ii), we apply equivalence (8), i.e. we have to prove that for each
y; € FS(r;) with j € {e,...,l}: 04(t;) = o(t;). A second application of (8) re-
veals that this equation is equivalent to

for each s € FS(tj): oi(s) = o(s).

This proposition finally is fulfilled, because o;, o are equal except for the elements
of B, and we have BN FS(t;) = 0. Namely, y; € FS(r;) occurs free in r;. The
existence of s € BN FS(t;) would then cause a collision upon the application of
w to T', which is precluded by assumption.

A.16 Lemma (Concatenation II): Let o be an f-substitution, 7" a term or formula, y1,...,y
either distinct variables or distinct nullary function or predicate symbols with

(Dom(o) UCod(c)) N{y1,...,y1} =0

and w = {y1/t1,...,y;/t;} a v-substitution or a nullary f-substitution. If the application
of o to T is collision free, then the following holds:

ow(T)) =v(c(T)) where v={yi/o(t1),...,y/o(t;)}.

Proof: This is proved by structural induction over T' = op(r1,...,ry,). For that, let o,
Ocont @s in Def. A 4.
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e If op € Dom(o): Let (b, (x1,...,%n)) = Ocont(0D).

(
v(o(T)) =v({z1/o(r1),...,an/0(rn)}b)
={z1/v(o(r1)),...,xn/v(c(rn))}b by Lem. A.15
= {z1/o(w(r1)), ..., an/o(w(rn))}b by IH
o(op(w(r1),...,w(ra)))
=o(w(T)) asop & {vy1,...,u}
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It is possible to apply Lem. A.15 in this derivation, as by assumption we have

(FSO\{z1,...,zn}) N{y1,-..,yip =0
— FSO) N{y,...,y} C{x1,..., 20}

and furthermore the application of {z1/0(r1),...,xn/0(ry)} to bis collision free.

e If op = y;: Then n = 0 and

(y3) as y; ¢ Dom(o)
(t:) = o(w(yi))

1%
=0

e Otherwise (op is something else)

v(o(T)) = v(op(o(r1),...,0(rn)))
=op(vi(o(r1)),...,vn(o(ry))) op may bind variables
=op(o(wi(r1)),...,0(wn(rn))) by IH

A.17 Ezample: In Sect. 4.4.2, the previous lemma is used to prove that applications of the
HT-rule (Ex) stay valid upon the replacement of skolem symbols, which are used to for-
mulate proof obligations for taclets, with concrete terms or formulas. This replacement
is performed by an f-substitution. For an illustration, consider the f-substitution o
given by

Ucont(pSk) = (Vy.q(z,y), <Z>)7 Ucont(fsk) - ({y d}g(z), <Z>)

that also contains an object-level substitution operator that binds the logical variable y.
In Sect. 4.4.2, the following application of o could arise, in which {x/c} is the (meta-
level) v-substitution of the logical variable x:

o({z/c}psk(fsk(x))).

Because the application of o to psk(fsk(x)) is collision free, and we also have

¢ ¢ Dom(o) = {psk, fsk},  Cod(o) = {q,d, g},

Lem. A.16 tells us that

o({z/c}tpsk(fsk(x))) = {z/c}o (psk(fsk(2))))

which is verified by

o({z/ctpsk(fsk(2))) = o (psk(fsk(c)) = Vy.q({y d}g(c),y)
{z/c}o (psk(fsx(2)))) = {z/c}Vy.q({y dyg(x),y) =Vy.q({y d}g(c),y).
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A.1.1. f-Substitutions and Schema Variables

The following lemma associates schema variable instantiations for FOL (as in Sect. 3.2.1)
and f-substitutions. We will show that for certain schema variable instantiations ¢ and
f-substitutions w, there is a second instantiation x making the following diagram com-

mutative:
2
SN

) —= wlily)) = xly)

The lemma depends on the possibility to have contexts #ct that contain more than
one “insertion point” axs (i.e. the unique-flag is false). Namely, if the symbol ayq
occurs as argument of a function or predicate symbol f in an instantiation «(#ct) (in
t(¢)), replacing f by a term or a formula could lead to multiple occurrences of a.t
(or none). To make the set R of valid instantiations closed under f-substitutions, it is
thus necessary to reset the unique-flag.

A.18 Lemma (Schema Variables and f-Substitutions): Let ¢ be a formula or term containing
VariableSV, TermSV, FormulaSV and ContextSV #s1,...,#sk, such that for each
occurring ContextSV the unique-flag is false. Let ¢ = {#s1/aq,...,#sk/ai} be a valid
instantiation, and o be an f-substitution

e satisfying the conditions of Lem. A.8
e for each function or predicate symbol s of ¢: s ¢ Dom(o)
o for each ContextSV #s; = #cti: ayc, ¢ Dom(o) U Cod(o).

Then there is an f-substitution w, equal to 0 modulo bound renaming, with

1. kK ={#s1/w(a1),...,#sk/w(ag)} is a valid instantiation, in which the applica-
tions of w are collision free

2. The following equation, in which the application of w is collision free, holds:
k() = w(e(p))

Proof: We replace all bound variables within ¢ with distinct ones not occurring in o,
a; or ¢ and get the f-substitution w. Then collisions may not occur as w and «;, ¢ do
not contain common variables, and both claims are fulfilled:

1. e Instantiations of VariableSV are not modified and do not occur bound within

any instantiation w(a;), as they do not occur bound in «; and cannot be
introduced (bound) by w
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e Lem. A.8 guarantees that F'V (w(o;)) C FV (o) for TermSV and FormulaSV
instantiations. Moreover, for ContextSV #s; = #ct; we have

Bound(a;) C Bound(w(e;))

as the arguments of functions or predicates do not leave the scopes of opera-
tors binding logical variables when applying w. Altogether, prefix conditions
are still fulfilled with &.

2. The equation is proved by a structural induction:

e For a VariableSV, TermSV or FormulaSV #s;:
k(#si) = wlaq) = wlu(#si))

e For a ContextSV +#s; = #ct;:

R(Heti(r)) = {ager, /() () B {ager, f(u(r) Jo(s) 2 wle(Hbeti(r)

where (k) uses Lem. A.16 and the premise.

e For any other operator op:

k(op(ri,...,mn)) = op(k(r1), ..., k(rn))
4 op(w(e(r1)), ... ,w(e(ry))) ) w(tlop(ry,...,m)))

where (k) uses the premise.

A.2. Substitution of Skolem Symbols for JavaCardDL

Analogously to the f-substitutions of the previous section, in this one we define a
family of substitutions that replace the skolem symbols Symg,, introduced in 4.6.2.
These so-called s-substitutions (substitutions of skolem symbols) follow exactly the
same intention as f-substitutions, and most properties we have formulated for the latter
ones can be translated with minor modifications only. For the following, we denote the
set of all formulas, terms and programs of JavaCardDL with Syn (as introduced in
Sect. 2.1), and with Syng, we denote the set of all formulas, terms and programs of
JavaCardDLgy (i.e. of JavaCardDL, enriched with the skolem symbols Symg).

While for f-substitutions the arguments of symbols to be replaced are terms (and the
formal parameters are logical variables, so that normal v-substitutions could be used to
achieve call-by-name parameter passing), for skolem symbols of Symg, we need to treat
terms, program variables and jump statements (these kinds of arguments can occur for
skolem symbols). As formal parameters for these kinds of constructs we use

e logical variables 2 € Var for terms (when replacing function and predicate skolem
symbols), exactly as for f-substitutions

e program variables v € PVar for program variables (the formal parameters are
renamed to the call-parameters)
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e for jump statements we use labels | € Label (when replacing statement skolem
symbols).

We denote the set of these possible formal parameters (depending on a given vocabu-
lary) by Par:
Par := VarU PVarU Label.

A.19 Definition (Parameter Substitution): A parameter substitution
w={z1/t1,...,x/tr}
is a map Syng, — Syngy, defined by
w(z;) = t;, or for z; a label: w(z;: skip) :=t;

(i.e. in the latter case the neutral statement skip®* labelled with z; is replaced with
t;). Each pair (z;,t;) (i € {1,...,k}) has to be of one of the following kinds:

e z; € Varis a logical variable and ¢; € Term is a term, both having the same sort
e x;,1; € PVar are both program variables, having the same type
e 1, € Label is a label and ¢; is a Java statement.

w is continued as a homomorphism to elements 1" € Syng, respecting operators binding
symbols, which can be

e operators binding logical variables, like quantifiers and object-level substitution
operators (for substitution of logical variables)

e declarations of local (stack) program variables (for renaming program variables).

A.20 Ezample (Parameter Substitution): We substitute a term, a program variable and a
statement:

{z/f(a),v/w,l/throw t}((int v; v =0 1:skip;>p(x,v)>
= (int v; v = 0; throw t;)p(f(a),w)

The following definition is almost identical to Def. A.4, except that other kinds of
symbols are replaced, and that we use the parameter substitution of Def. A.19 instead
of v-substitutions:

A.21 Definition (s-Substitution): An s-substitution o is a map
o @ Syngy — Syngy
such that there is a map
Ocont : Symg, — Syng, X Par*

satisfying

54We only allow the replacement of the neutral statement skip to avoid problems and more complicated
definitions caused by free symbols (like program variables or labels) that could otherwise occur
within the statement.
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e cach function symbol sgx € Symgy is mapped onto a pair (7', (x1,...,zx)), where
T is

a term that has the same sort as sgi for ssx € Funcsy

— a formula for sgi € Predsy

a JavaCard statement for sgx € Statementsy

a JavaCard expression that has the same type as sgx for sgx € Expressiong,

and x1,...,x, € Par are distinct formal parameters, compatible to the signature
of sgkx (and in particular having correct sorts and types):

— logical variables x1,...,x; € Var, for ssk € Funcsk U Predgk
— program variables z;,1,...,Z,;, € PVar (in any case)

— labels z41,- ..,z € Label, for sskx € Statementsy
e for almost all symbols ssk, ocont (Ssk) = (ssk(@], ..., z}), (T1,...,2)), with

'IZ =

, {x, skip for x; a label

T; otherwise
(i.e. essentially sgk is mapped onto itself)
e o is the application of oot to terms, formulas and programs:
— For skolem symbols ssk:
o(ssk(r1,---578)) = {21/0(r1), ... 2 /o (ri) }T
where Ocont (Ssk) = (T, (x1,...,2k))

(we use the parameter substitution of Def. A.19)
— All other constructs are handled faithfully.

A.22 Ezxample (s-Substitution): For the statement skolem symbol sgx and the s-substitution
o described by

Ucont(SSk) = (0‘7 <V71>)7
and the statement « being
{ if ( v ==0) l:skip; else break m; }
we consider the application
0((1 : { int w; sgk(w;continue m); }>g0)
To perform this application, first the parameters of sgx have to be substituted in a:

o (ssk(w; continue m)) = {v/w,1/continue m}a
= { if ( w == 0) continue m; else break m; }.

The result of the parameter substitution is then inserted in the enclosing formula, which
leads to

(1 :{ int w; { if ( w == 0 ) continue m; else break m; } })o(yp).
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In the previous section we denote the set of free symbols within a term or formula
T by FS(T). To treat issues of dynamic logic, in this section we also allow 7" to be a
program (fragment), and define F'S(T') to contain the following symbols of 7T":

e free logical variables

e function and predicate symbols

e free (i.e. not locally declared) program variables
e skolem symbols of Symg,

e free labels within programs, i.e. labels occurring as arguments of a break or
continue-statement, that are not bound by the labelling of an enclosing state-
ment.

Referring to this generalised meaning of 'S, the domain Dom(o) and codomain Cod (o)
of an s-substitution o are defined similar as for f-substitutions (Def. A.7), namely by

A.28 Definition (Domain and Codomain): Let o, ocont be as in Def. A.21. As usually we
define the domain Dom(o) of o to be the set of skolem symbols not mapped onto
themselves (as in Def. A.21), and the codomain Cod(c) of o by

Cod(c) = U FS(a)\ <{x1, o ,xk}\Label> 55

s€Dom(o)
(a,(zl ''''' I]g)):o'cont(s)
We reformulate Lem. A.8, which determines the free variables that can be introduced
by an f-substitution, in a slightly more general version that is needed for a subsequent
proof:

A.24 Lemma (Free Symbols and s-Substitutions): Let o be an s-substitution and T' € Syng,
an element of JavaCardDLg,. Then we have

FS(o(T)) Cc FS(T)U Cod(o).
Renaming of bound symbols can be performed for s-substitutions as for f-substitutions:

A.25 Definition (Bound Renaming of s-Substitutions): Let ocony and weont be contents as in
Def. A.21. ocont and weont and called equal modulo bound renaming, if for each sym-
bol sgx € Symgy With ocont(Ssk) = (a, (z1,...,Tk)), Weont(Ssk) = (b, (Y1, ..., yx)) the el-
ements

{z1/21,. ., op/zeta and {yi/z1,... yk/zi}0

are equal modulo bound renaming, where z1, ..., z; are distinct. The substitutions used
are parameter substitutions, and the particular replacements z; are chosen accordingly
to the kind of x; (or y;):

55We have to remove labels z; from the list of formal parameters, as there may be free occurrences of
x; within a which are ignored by a parameter substitution (parameter substitutions only replace
distinguished statements labelled with ;).
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e For a logical variable x; € Var, z; also is a logical variable, which has the same
sort as x;, and that does not occur in a or b

e For a program variable x; € PVar, z; is a program variable, which has the same
type as x;, and that does not occur in a or b

e For a label z; € Label, z; is the empty statement labelled with a new label z:
I .
z;: skip.

s-Substitutions ¢ and w are called equal modulo bound renaming, if there are contents
Ocont aNd weopt as in Def. A.21 which are equal modulo bound renaming. *

A.26 Definition (Restriction of s-Substitutions): Let o and ocont be as in Def. A.21, and
suppose S C Dom(o) is a set. By
olsg i=w

we denote the restriction of o to S, which is defined by
Weont (Ssk) = Ocont(Ssk) ~ for ssk € S,

where w, weont are as in Def. A.21, and weont maps all other symbols onto themselves
(again as in Def. A.21). *

A.27 Lemma (Decomposition of s-Substitutions): Let o and o¢ont be as in Def. A.21, and
suppose S C Dom(c) and T := Dom(o)\S are sets. If

T N Cod(olg) =0

then it is possible to decompose ¢:°°

o=o|lrools

A.2.1. Collisions

Collisions that may occur when applying an s-substitution ¢ are defined similar as for
f-substitutions (Def. A.10), but we refer to more kinds of symbols:

e Logical variables
e Program variables
e Labels.

To be more exact, let o and o¢ony be as in Def. A.21 and oeont(ssk) = (T, (x1, ..., Tk))-
The parameter substitution

{"El/g(rl)a s 7xk/0-(rk)}T

that is performed upon the replacement of an occurrence of sgx when applying o can

56The performed concatenation o is the concatenation of maps.
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e Insert terms o(r;) containing free logical variables within the scope of operators
binding logical variables. For program variables or labels within o(r;) this cannot
happen, as we assume that scopes of these symbols are restricted to program
blocks, which on the other hand cannot contain logical variables (and terms o(r;)
are only substituted for logical variables z;).

e Rename occurrences of program variables o(r;) within the scope of declarations
of other program variables (within program blocks).

e Insert statements o(r;)

— that contain free program variables within the scope of declarations of pro-
gram variables

— that contain jump statements with labels within labelled statements.?”

Substituting the result r of the parameter substitution for the skolem symbol sgk
may cause further collisions:

e For sgx € Funcsk U Predgy, T is a term or formula and may contain free logical
variables (which are not formal parameters), and can be inserted within the scope
of an operator that binds variables (again, problems with program variables or
labels cannot occur at this point).

o For sgi € Statementgy U Expressiong,, T is a statement or expression, which may
contain free program variables (again not formal parameters) or labels, and can
be inserted below/after declarations of program variables or within labelled state-
ments (7" cannot contain logical variables, and thus no collisions involving logical
variables can occur)

e A symbol sgx € Statementsky may be replaced with a statement not respecting
scopes (following Def. 2.1), which can alter the binding of trailing program vari-
able occurrences.

To prevent the last three kinds of collisions, we will usually formulate conditions to
the codomain Cod(c) of o (note that in general it is not possible to avoid these collisions
by bound renaming of the s-substitution, it is additionally necessary to rename symbols
of the formula the s-substitution is applied to):

Definition (Collision Preventing s-Substitutions): An s-substitution o is called colli-
sion preventing regarding an element 1" € Syng,, iff

e The codomain Cod(c) does not contain logical variables®® or labels

Cod(o) N Var =10, Cod(o) N Label = ()

5TMore generally, one could always call the modification of the target of a jump statement by an
insertion a collision; this would also apply to unlabelled break- and continue-statements or
throw-statements. However, as we are mainly interested in the notion “collision” as a premise
for Lem. A.30, and are not formulating a semantical substitution lemma, this is not necessary.

58This is also the premise of Lem. A.8, and is observed in Sect. 4.4.2 to hold for the f-substitution
used for FOL proof lifting.
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A.81

A.32
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e Program variables of the codomain Cod (o) do not occur in 7.

In this definition, the second condition regarding program variables is weaker than the
corresponding condition on occurrences of logical variables, because free occurrences
of program variables are allowed for the JavaCardDL sequent calculus. Thus it is
not possible to forbid free program variables that are introduced by s-substitutions
completely. This observation is also made in the definition of the pvPrefix-property of
schema variables (Sect. 3.2.2).

As for f-substitutions, collisions caused by the parameter substitution and statements
not respecting scopes can be avoided by bound renaming;:

Lemma (Collision Free s-Substitutions): Let o be an s-substitution and 7' € Syng, an
element of JavaCardDLgy, such that o is collision preventing regarding 7. Then there
exists an s-substitution w, that is equal to ¢ modulo bound renaming, such that the
application of w to T is collision free. *

In matters of this lemma, the requirement that o is collision preventing could actually
be weakened. In particular could the second item of Def. A.28 be replaced with the
condition that program variables of the codomain must not occur bound in T

Lemma (Renaming Everything): Let T, S € Syng, be elements of JavaCardDLgy which
are equal modulo bound renaming, and ¢ and w be s-substitutions which are also equal
modulo bound renaming. If the applications of ¢ to T" and of w to S are collision free,
then o(7T') and w(S) are equal modulo bound renaming. *

A.2.2. Concatenation of s-Substitutions

The following two lemmas are adaptions of lemmas from Sect. A.1 to s-substitutions.
For that, we assume that f-substitutions are continued to programs by the identity
map.

Lemma (Analogue to Lem. A.15): Let o be a v-substitution or a nullary f-substitution,
T € Syng, an element of JavaCardDLgk, and w = {y1/t1,...,y;/t;} a parameter sub-
stitution. Provided that

e the application of w to T does not cause collisions and
o FFS(T)NDom(o) C {y1,...,yi}

we have
ow(T)) =v(T) where v={yi/o(t1),...,y1/o(t;)}.

Lemma (Analogue to Lem. A.16): Let o be an s-substitution, 7' € Syng, an element
of JavaCardDLsyk, ¥1,...,¥; either distinct variables or distinct nullary function or
predicate symbols with

(Dom(o) U Cod(o)) N{y1,...,y1} =0

and w = {y1/t1,...,y;/t;} a v-substitution or a nullary f-substitution. If the application
of o to T is collision free, then the following holds:

o(W(T)) = v(o(T)) where v ={yi/o(tr),....u/ot)}.
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A.2.3. s-Substitutions and Schema Variables

The following lemma is essential for the proof transformation performed in Sect. 4.6.6
treating JavaCardDL, and essentially contains the same proposition as Lem. A.18:
The instantiation of a schematic formula and the application of an f-substitution to
the resulting instance can be commuted. The lemma in this section is however not
restricted to schema variables for FOL, but discusses all variables defined in Sect. 3.2,
and it refers to s-substitutions instead of f-substitutions. As for Lem. A.18, to preserve
the validity of an instantiation « of a StatementSV when an s-substitutions ¢ is applied,
it is necessary formulate a number of conditions on . These restrictions are embodied
in the next few definitions.

For the following, we assume that a set S of schema variables is fixed, and denote the
set of schematic elements of JavaCardDL (resp. of JavaCardDLgyk) with Syngy (resp.
with Syngy gv)-

First we continue the notion of statements respecting scopes, which is introduced in
Def. 2.1, to s-substitutions:

A.33 Definition (s-Substitutions respecting Scopes): Let o and ocont be as in Def. A.21. We

A.8

say that o respects scopes, if for each statement skolem symbol sgix € Statements, with
Ocont (Ssk) = (T, (...)) the statement T respects scopes. *

The next definition is the central premise of the commutation lemma, and it can be
regarded as an adaption of the first premise of Lem. A.18 for f-substitutions:

e The codomain Cod(o) of the f-substitution that is considered must not contain
logical variables.

The corresponding requirements for s-substitutions are a bit more complicated, how-
ever:

Definition (Compatible s-Substitutions): Let o be an s-substitution, and F C Syng, be
a set of elements of JavaCardDLgx. We say that o is compatible with F, iff:

e For each T' € F: o is collision preventing regarding 7' (by Def. A.28)
e For sgx € Statementsk and ocont (Ssx) = (a, (1, ..., 2k)) (0, Ocont as in Def. A.21):

— a does not contain any method-frames

— there are no return/break/continue-statements (with or without argu-
ment) within a whose target is outside of a

e o respects scopes.

The second item could be formulated as: the replacement of sgx may complete
abruptly only through statements which are arguments of sgk (and by exceptions).

Instantiations of StatementSV have to respect scopes, hence it is necessary that this
property is preserved by s-substitutions. Otherwise the schematic formulas we are
considering could not be closed under s-substitutions:
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A.35 Lemma (Statements and s-Substitutions respecting Scopes): Let a be a statement or a
list of statements, and o an s-substitution, both respecting scopes. Then o(«) also
respects scopes. *

Finally, we can formulate the announced lemma:

A.36 Lemma (Schema Variables and s-Substitutions): Let ¢ be a formula, term or program
containing the schema variables #s1,...,#s; (which may be of any type we have
defined), such that for each occurring ContextSV the unique-flag is false. Moreover let
vt ={#s1/01,...,#si/ar} be a valid instantiation which may contain skolem symbols
(following Def. 4.19), and o be an s-substitution

e that is compatible with {¢(¢), a1, ..., ax} (by Def. A.34)

o for each (skolem) symbol s of ¢: s ¢ Dom(o)

e for each ContextSV or PContextSV #s;: axs, ¢ Dom(o) U Cod (o).
Then there is an s-substitution w, equal to 0 modulo bound renaming, with

1. k ={#s1/w(aq),...,#si/w(ag)} is a valid instantiation, in which the applica-
tions of w are collision free

2. The following equation, in which the application of w is collision free, holds:
k() = w(e(y))

Proof: To avoid collisions, we replace all bound logical variables, program variables and
labels of o by new, distinct symbols (not already occurring in o, ¢ or ¢). The resulting
s-substitution w can be applied without collisions to ¢(¢) and aj, ..., ak.

1. To show the validity of the instantiation x, we consider the definitions of each
schema variable type:

o Instantiations of VariableSV are not modified and do not occur bound within
any instantiation w(q;), as they do not occur bound in «; and cannot be
introduced (bound) by w; the same holds for LabelSV

e By Lem. A.24, for instantiations of TermSV and FormulaSV «; we have
FS(w(ay)) € FS(ay) U Cod(w),

and as w prevents collisions even F'V (w(a;)) C FV(a;); as in the proof of
Lem. A.18 for ContextSV #s; = #ct; we have Bound(a;) C Bound(w(e;))
and the condition given by the prefix property of TermSV and FormulaSV
holds for

e For a ContextSV #s; = #ct; having the SUL-flag set to true, in «; skolem
symbols cannot occur above the symbol ax., (by Def. 4.19); therefore the
application of w cannot introduce modalities above a4, either
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Instantiations of PVariableSV #s; are not modified by w, and cannot occur
bound within the instantiation of any other schema variable (which follows
from the same arguments as for VariableSV). We can further observe that
for the instantiation «; = v; and another schema variable #s;

Vi ¢ FS(Oéj) = Vi ¢ FS(LU(CKJ‘)),

again because of
FS(w(aj)) € FS(aj) U Cod(w),

and v; ¢ Cod(w) by premise. Therefore the conditions given by the proper-
ties unusedOnly and pvPrefix (for TermSV, FormulaSV, StatementSV and
ExpressionSV) are fulfilled

By Def. A.34, instantiations w(a;) of StatementSV #s; do not contain
method-frames (provided that «; does not contain any); by Lem. A.35 w(«;)
respects scopes

Considering the jumpPrefix property of StatementSV #s;, we are again
using that PVariableSV and LabelSV instantiations are not altered by w,
and for a PContextSV #s; = #pct; we have

Jumps(w(ej)) = Jumps(a;)

as the blocks within a; relevant for Jumps(c;) are not modified by an s-
substitution (and therefore the symbol a4, occurs in w(a;) exactly once
at a valid position). The set T of the StatementSV definition thus remains
untouched for x:

T#Si(l’) = T#Si(’%)'

As w is a compatible s-substitution, w(c;) will on the other hand not contain
more (significant) jump statements than «;, regarding Def. 3.14.

2. The equation is proved by a structural induction:
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For a ContextSV #s;, we use the same reasoning as in the proof of Lem. A.18,
replacing the reference to Lem. A.16 by Lem. A.32

For a PContextSV #s; = #pct;, we can observe again that a4, occursin «;
only below operators that w treats as a homomorphism, which immediately
entails

k(#pcti(8)) = w(u(#pcti(B)))

For other schema variable types (for which the instantiation map is a simple
replacement, as we have already discussed the more complicated ones) and
other operators, the claim follows as in the proof of Lem. A.18.
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