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Abstract—Compositionality has the potential to enable a
step-change in the scalability of formal design and verification
methods for industrial-scale systems: by designing systems
in a compositional manner, components can be modelled,
specified, implemented, and verified independently and in
parallel by different teams, leading to significant gains in
terms of productivity and the ability to reuse components.
We discuss why component-based frameworks have, up to
now fallen short of meeting those expectations, and present
the X-MAN framework; a component-based framework and
development methodology that has been designed to overcome
limitations of previous solutions. Walking through an industrial
case study, we illustrate architecture, specification, detailed
design, and implementation of systems in X-MAN. Correctness
and reliability concerns are addressed uniformly within X-
MAN through integration with existing static analysis tools
for functional and extra-functional properties.

Keywords-Component-based modeling; compositional verifi-
cation and validation; formal methods.

I. INTRODUCTION

An increasing number of computer systems are embedded
into other devices, including in numerous safety-critical
domains. At the same time, the complexity of the software
in these systems is growing exponentially. One approach
to manage this complexity in the design phase is to apply
a component-based software development approach, which
promises time-savings, cost-savings, and increased produc-
tivity via component reuse [21]. However, using off-the-
shelf components properly and safely is a serious challenge,
which implies the significant need to specify and verify the
components and their assemblies, up to the level of the full
system (built from components) to assure functional and
non-functional correctness [10].

As an algorithmic formal verification method, Model
Checking [9] automatically assesses whether a finite-state
model of a system under test satisfies a given formal
specification. Significant advances have been achieved in
the development of model checking. However, scalability is
still one of the main obstacles in the application of Model
Checking to verify complex industrial systems. One key
approach in achieving scalability is “divide-and-conquer”,
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which typically involves two basic steps. Firstly, the system
is decomposed into a set of smaller components, in order
to apply Model Checking to individual components (of
managable size) in isolation. Secondly, the system-level
property is established by assembling the verification results
for its components without analyzing the whole system.

The ARTEMIS CESAR project aims to improve the
cost-efficiency of processes and methods for safety-critical
embedded systems development by an order of magnitude.
One objective is to bring significant innovations in some
of the systems engineering disciplines with most scope for
improvement such as component-based engineering. Thus,
component-based development, which facilitates system ex-
ploration and provides means for incremental verification,
validation and certification, is one of the main focuses in
CESAR. We present a component-based design and veri-
fication methodology based on X-MAN arising from and
supported by the CESAR project, and give a case study of its
application in a real-world embedded system from industry.

X-MAN is a framework for compositional software design
developped at the University of Manchester [17]. Its features
include, among others, (i) strong separation of components,
that is, components are strictly separated with respect to
data and side-effects of execution at the functional level,
and (ii) that coordination control among a set of com-
ponents is entirely governed by composition connectors.
These features suggest that the X-MAN framework is well-
suited to compositional verification. Our aim is to develop
a new compositional design and verification methodology
based on X-MAN using automated formal techniques, and
to investigate its applicability to safety-critical embedded
systems, specifically in avionics and automotive control.

Related Work

X-MAN is not the only framework of this kind. The
Component Formal Reasoning Technology (ComFoRT) [7]
is a modelling and reasoning framework developed at the
SEI with the aim of predictability in the construction of
component-based systems, that is, predicting the behavior of
a component-based system prior to implementation based on
properties of the components. The strategy is to formalize a
particular component-based idiom [22] in a custom compo-
nent language for modeling design specifications, and then to
apply model checking. Although ComFoRT is comprehen-
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sive, its actual applicability to embedded systems has not
been studied extensively. In [19], Quinton et al. proposed
a contract-based reasoning framework for the component-
based design of complex, hierachically defined systems. It is
based on an existing component framework for constructing
systems called BIP (Behavior, Interaction, Priority) [2]. The
composite connectors in BIP have the formally defined
semantics [5]. This framework supports rigorous component-
based design [1] and verification [4] in various applications,
such as the componentization [3] of existing functional
modules [12] in apply to robotic systems. In comparison,
while the compositional verification methodology proposed
in this paper is mainly based on the X-MAN component-
based framework, it can be generalized easily to other similar
component-based frameworks.

With the active development of component technolo-
gies, formal verification for component-based designs is
gaining prominence and modular reasoning is key to its
scalability [11]. One of the issues is the effort required
to specify the individual components, which has stimulated
research on automatically generating modular assumptions
under which a given component satisfies a desired property,
enabling automated computation of contracts for individual
components. These techniques are out of the scope of this
paper, and we only mention [13] as an exemplar.

Outline

This paper is organized as follows: in Section 2, we first
present the X-MAN component design methodology. Next,
in Section 3, we elaborate on the formal semantics for X-
MAN, which are the foundation of compositional formal
verification described in Section 4. We then present the case
study extracted from a real-world application in avionics,
apply the X-MAN modeling framework and provide results
of the application of the compositional verification method-
ology to the case study in Section 5. Finally in the Appendix,
we show some screenshots of the X-MAN tool when applied
to the case study.

II. THE X-MAN COMPONENT DESIGN METHODOLOGY

In the X-MAN component-based approach, components
are constructed from two kinds of basic entities: (i) com-
putation units, and (ii) connectors. A computation unit U
encapsulates computation. It provides a set of methods.
Encapsulation means that U’s methods do not call methods
in other computation units; rather, when invoked, all their
computation occurs inside U. Thus, U can be thought of as
a class that does not call methods in other classes.

There are two kinds of connectors: (i) invocation, and
(ii) composition. An invocation connector is connected to a
computation unit U so as to provide access to the methods
of U.

A composition connector encapsulates control. It is used
to define and coordinate the control for a set of components.

For sequencing, we use the pipe and sequencer connectors,
and for branching, we use the selector connector. A pipe
connector that composes components C1, ..., Cn can call
methods in C1, ..., Cn in that order, and pass the results
of calls to methods in Ci to those in Ci+1. A sequencer
connector is the same as a pipe but does not pass the results
of Ci to Ci+1. A selector connector that composes compo-
nents C1, ..., Cn simply selects one component according to
a selection condition.

Components are defined in terms of computation units and
connectors. There are two kinds of components: (i) atomic,
and (ii) composite. An atomic component consists of a
computation unit with an invocation connector that provides
an interface to the component. An atomic component is
depicted in Fig. 1(a). A composite component consists of
a set of components (atomic or composite) composed by a
composition connector. The composition connector provides
an interface to the composite. A composition connector is
presented in Fig. 1(b) and a composite component composed
from two atomic components and a connector is depicted in
Fig. 1(c).
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Figure 1. X-MAN component model.

Invocation and composition connectors form a hierar-
chy [16], i.e., composition is performed in a hierarchical
manner. Furthermore, each composition preserves encapsu-
lation. This kind of compositionality is the distinguishing
feature of the X-MAN approach. An atomic component
encapsulates computation, namely the computation encap-
sulated by its computation unit. A composite component
encapsulates computation and control. The computation it
encapsulates is that encapsulated in its sub-components; the
control it encapsulates is that encapsulated by its compo-
sition connector. In a composite, the encapsulation in the
sub-components is preserved. Indeed, the hierarchical nature
of the connectors means that composite components are
self-similar to their sub-components, i.e., composites have
the same structure as their sub-components; this property
provides a basis for hierarchical composition.

In general, a system constructed using this approach
consists of a hierarchy of composition connectors sitting
atop a flat layer of decoupled atomic components as shown
in Fig. 3. The hierarchy of composition connectors totally
encapsulates the control in the system, whilst the atomic
components encapsulate the computation performed by the
system.
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III. FORMAL SEMANTICS OF X-MAN
A. The Meaning of a Component

Our modeling and verification methodology is agnostic
to the programming language used to implement atomic
components, the precise format of contracts used to specify
components or sub-systems, and the language used to spec-
ify system properties to be verified. To ensure the overall
soundness of our approach, we therefore designed a unify-
ing, language-independent formal semantics for X-MAN. By
mapping various design artifacts into this common formal
framework, we are able to freely mix (at a conceptual level)
different implementation languages, different specification
languages, or hard- and software components within a single
model.

In our semantics, a component, system, or sub-system T
is a tuple (S, S0,Op, impl) consisting of
• a state space S, which is a non-empty (finite or infinite)

set,
• a non-empty set S0 ⊆ S of initial states,
• a finite set Op of operations offered by the component,
• a mapping impl from operations to operation imple-

mentations. The implementation impl(op) of an oper-
ation op ∈ Op is a relation between pre-states, inputs,
post-states, and outputs

impl(op) ⊆
(S × I1 × · · · × In︸ ︷︷ ︸

Inputs

)× (S ×O1 × · · · ×Om︸ ︷︷ ︸
Outputs

)

i.e., is modelled to be potentially partial and po-
tentially non-deterministic. If the context is clear,
we also specify the signature of an operation as
op : I1 × · · · × In → O1 × · · · ×Om.

B. Construction of Components

Components can be constructed in a number different
ways:
• concrete atomic components are implemented in pro-

gramming languages such as C; the semantics and
behavior of such a component is inherited from the
semantics of C.

• abstract atomic components are defined declaratively,
e.g., via a set of contracts consisting of pre- and
post-conditions, similarly to the definition of abstract
datatypes in terms of axioms. The semantics of an
abstract component is derived from the semantics of
the employed formal specification language (e.g., first-
order logic).

• composite components are constructed by applying
composition connectors, invocation connectors, or
adapters to a set of simpler components. Conceptu-
ally, connectors and adapters are therefore mathemat-
ical functions operating on components as defined in
Sect. III-A.

The formal semantics of connectors and adapters is un-
ambiguously defined in terms of mathematical set theory.
To generate executable code from X-MAN models, it is also
necessary to provide concrete implementations (realizations)
of the X-MAN connectors and adapters, which is done as
part of the X-MAN modeling tool that is used for our
experiments. Given an X-MAN model, and implementations
of all concrete components in the C programming language,
the tool is able to automatically generate a C implementation
of the whole modeled system. It is possible to prove the the
consistency of the connector realizations with their formal
semantics, but this step is outside of the scope of this paper.

Examples of concrete and abstract components are given
in Sect. V.

C. Component Refinement

The behavior of concrete and abstract components (e.g.,
a concrete implementation of a component in C, and an
abstract description of the same component in terms of
contracts) can be related using the notion of refinement.
Intuitively, a concrete component T1 refines an abstract
component T2 (written T1 � T2) if T1 has “less behavior”
than T2, i.e., all computation steps and outputs possible for
T1 are also possible for T2, but not necessarily vice versa.

We use the notion of component refinement for various
verification tasks: vertical verification means proving that a
concrete component T (say, implemented in the C language)
satisfies it’s specification, i.e., does not violate any of the
contracts that have been formulated for it. In terms of
components, we say that the concrete component T refines
the corresponding abstract component T a defined by the
contracts, i.e., T � T a.

Refinement also supports horizontal verification, which
means to prove that the contracts of components entail
desired properties of the system as a whole. Horizontal
verification can be conducted by means of refinement, since
we can observe that the X-MAN connectors and adapters
are monotonic with respect to the refinement relation �. For
instance, assume that the relations T1 � T a

1 and T2 � T a
2

hold. This implies that the composite components obtained
by applying the Pipe connector are similarly related by �,
i.e., Pipe(T1, T2) � Pipe(T a

1 , T
a
2 ):

T1 T2

T a
1 T a

2

Pipe(T1, T2)

Pipe(T a
1 , T

a
2 )

� �

�

In other words, in order to prove that a system Pipe(T1, T2)
satisfies a certain safety property, it is sufficient to verify that
the corresponding abstract system Pipe(T a

1 , T
a
2 ) (obtained

by composing the contracts that represent the components
T a
1 and T a

2 ) has this property.
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To introduce refinement more formally, suppose two com-
ponents Ti = (Si, S

0
i ,Op, impl i) (for i ∈ {1, 2}) with the

same set Op of operations are given. We say that T1 refines
T2, written T1 � T2, if there is a relation R ⊆ S1 × S2

such that (i) for every initial state s1 ∈ S0
1 there is an

initial state s2 ∈ S0
2 such that s1 Rs2; and (ii) for every

operation op ∈ Op the following property holds:
whenever impl1(op)(s1, ī, s

′
1, ō) and s1 Rs2

hold, there is a state s′2 ∈ S2 such that
impl2(op)(s2, ī, s

′
2, ō) and s′1 Rs′2.

In this case, we also say that T1 refines T2 with respect to the
relation R. Note that � is a pre-order on components. Also
note that our definition closely corresponds to the notion of
simulation relations on transition systems.

In order to handle non-functional or extra-functional prop-
erties, a more general notion of refinement can be introduced
(which is beyond the scope of this paper). In this general-
isation, abstract operations are allowed to have a “richer”
signature than the corresponding concrete operations. For
instance, the parameters preTime and postTime described
in Sect. IV are not explicitly present in concrete components;
nevertheless, such parameters can be introduced explicitly
at the level of abstract components to reason about timing.
Other kinds of resources, such as program memory, can be
handled in a similar way.

IV. COMPOSITIONAL VERIFICATION AND
VALIDATION METHODOLOGY

A. Vertical and Horizontal Verification

Compositional verification requires an interface specifi-
cation (defined in terms of a contract [18]) for individ-
ual components, in addition to the specification for the
full system. With these two kinds of specifications, it is
possible to establish that (i) individual components satisfy
their contracts, and (ii) the system as a whole satisfies the
system specification, based on the component contracts and
the compositional relations of the components, using the
assumption that these contracts have been verified in the
first step. The compositional verification step does not rely
on the concrete implementation of the components.

In X-MAN, the primary form of contracts is pre-/post-
conditions and input/output paramenters of the component
computation unit. We assume that these contracts are stored
in a repository together with the component implementation,
thus enabling reuse. Each component can have multiple con-
tracts which specify different properties of the component.
The pre-conditions of a contract specify the scenarios in
which the contract applies; e.g., they could require that
the input parameters of the operation (provided at runtime)
are within legal ranges. Whenever the pre-conditions are
satisfied, and the contract can be applied, the post-conditions
of the contract specify the relationship between input and
output parameters (computed by the operation), as well as

the relationship between the pre- and the post-state of the
component (in case of stateful components).

In addition to such functional properties, timing properties
can also be specified in terms of the parameters preTime
and postTime implicitly present for each component. The
semantics of pre-/post-conditions is that of partial correct-
ness, as no claim about termination of component operations
is made.

Given an X-MAN model in which every atomic compo-
nent is instrumented with a contract specification, composi-
tional verification consists of two phases:

(i) Vertical verification ensures that the implementations
of each atomic component satisfy their component
contracts. To this end, the component implementation
is instrumented with assertions generated from the
component contracts. The assertions are subsequently
verified using an automated software model checker.
Such an instrumentation is possible both for functional
contracts and specific non-functional contracts, such as
those related to timing.

(ii) Horizontal verification: the atomic component contracts
are used to derive or verify properties of the system.
Such properties can also be described using pre-/post-
conditions, but are given not for individual components
but for the whole X-MAN model. The second phase,
consequently, only relates the contracts specified at
different levels of the system to each other. It is there-
fore sufficient to employ first-order decision procedures
such as SMT solvers [15] (in contrast to the software
model checkers required for the first phase). Depending
on the composition connectors used in the system, it is
also possible to compute the strongest contracts that
hold for a given composition by means of quantifier
elimination techniques.

Once both phases have been completed successfully, global
correctness of the X-MAN model is guaranteed, in the sense
that every concrete execution of the implementation satisfies
the desired global system properties.

B. The X-MAN Verification Tools

Our verification methodology is implemented in the X-
MAN-Verifier tool, developed by Oxford University and
Uppsala University. The X-MAN-Verifier is able to verify
both vertical and horizontal correctness properties of X-
MAN models, with the help of different verification back-
ends, and provides a common user interface to display the
status of the various verification tasks, as well as diagnostic
information in cases where verification fails.

Vertical verification: We use the bounded model-
checker CBMC [8] for ANSI-C and C++ programs as back-
end for vertical verification. By exhaustively exploring the
behaviour of programs up to a given loop bound, it can verify
safety properties such as the adherence to array bounds (no
buffer overflows), pointer safety, absence of exceptions, as
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well as user-specified assertions or contracts. If a property
does not hold, CBMC returns a counterexample, which is a
trace that violates the specification. Counterexamples can
often simplify debugging a faulty design or specification
significantly.

Many embedded applications have strict real-time require-
ments. As a consequence, loop constructs in embedded
software code often have a fixed bound on the number of
iterations. CBMC is able to formally validate such bounds
by means of unwinding assertions. Once the bound is es-
tablished, it provides proof of the absence of errors. CBMC
models machine integer and IEEE floating-point arithmetic
accurately and can reason about machine-level artefacts such
as bit-wise operators and integer overflows [6]. It is therefore
capable of detecting a bugs that go unnoticed by many other
formal verification tools.

Horizontal verification: The X-MAN-Verifier is also
able to check refinement properties between contracts and
system properties, thus implementing means of horizontal
verification. Beyond the verification of system properties,
the tool is able to automatically infer the strongest prop-
erties (strongest post-conditions) satisfied by the system
operations, from the contracts specified for atomic system
components.

To realize this functionality, the X-MAN-Verifier includes
a complete set of formal models of the X-MAN connectors
and adapters in terms of first-order logic. Reasoning about
such formal models, as well as contracts and system prop-
erties, is done using the Princess theorem prover [20] for
Presburger arithmetic and first-order logic.

V. A CASE STUDY IN AVIONICS

We conducted a case study on a representative avionics
application – the Ground Fuel Transfer function of a large
transport aircraft. It models the specific behaviours of the
fuel management system when the aircraft is physically on
the ground, as opposed to behaviours while the aircraft is in
flight.

A. An overview of the component structure of the Ground
Fuel Management System.

Recall that the behaviour of an X-MAN component is
defined by means of a set of operations. The gound fuel
transfer system consists of six selective top-level operations
which are mutually execlusive (Fig. 2): Automatic Refuel
(AR), Manual Refuel (MR), Defuel (DF), Ground Transfer
(GT), Shut-Off Test (SOT) and OFF. Each of them is further
composed of a set of sub-operations. In this paper, the sub-
modules are shown for the Manual Refuel operation only,
as shown in the largest box of Fig. 2, the MR operation
is composed of four sub-operations: Eval Cond, Idle, In-
Process, and Abort. The last three sub-operations are also
selectable on a mutually exclusive basis. Eval Cond shall be
called first to decide which of the rest three sub-operations

is chosen to be executed next at the runtime. Furthermore,
the In-Process consists of another four sub-components in
sequence. They determine the respective operations of the
central tank (CT), the left-wing tank (LWT), the right-wing
tank (RWT), and the surge tank (SP) under the manual
refuel operation mode. All tanks provide both fuel output via
pumps and fuel inlet via valves, each being independently
switchable by an external controller. This controller monitors
the fuel flow between tanks, calculates the required tank-to-
tank fuel transfers and sends the appropriate control signals
to the pumps and valves of all tanks.

The internal compositional structure of the MR compo-
nent is typical for the ground fuel management system. The
other operations have a similar compositional architecture;
for brevity, Fig. 2 contains the details of MR only. Moreover,
the component-based implementation of MR exercises most
features available in the X-MAN framework, making it
a suitable exemplar to illustrate the proposed component-
based design and verification approach.

Abort

Eval_Cond

Idle

In_Process

MR_TK_CT

MR_TK_RWT

MR_TK_LWT

MR_SP

Manual Refuel Op

AR Op GT Op SOT Op

DF Op

OFF Op

Ground Fuel Management System

Figure 2. A functional composition overview of a ground fuel management
system

In order to clearly describe the properties under verifica-
tion, we first clarify the differences between two terms used
in the system requirement specifications of our case study.
1). State: describes the (durable) condition after the system
performs one or a sequence of operations following the entry
condition. For instance, the Inlet Valve state of each tank
shall be either ”SHUT“ or ”OPEN”. 2). Status: It describes
the extant condition of some physical component. In this
case study, the status of each component is evaluated every
cycle and given the value NORMAL or FAILED.

For verification purposes, most properties that we cur-
rently check are safety properties, which state that “some-
thing bad must never happen”, such as:

(i) When the system input overflow condition is True, MR
must be in the Abort operation mode no matter what
other inputs are.

(ii) When the Inlet Valve state of a tank is SHUT, but the
status of this Valve is FAILED, the fuel mass of this
tank must never exceed a certain constant value C.

(iii) When the status of MR is NORMAL, the execution of
MR must never be engaged for longer than 55 seconds.

These example properties above are at the different ab-
straction levels. (i) and (iii) refer to the entire system-level
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Figure 3. A component-based manual refuel system

properties of MR, while (ii) relates to the specific atomic
operation of a tank which can be used directly to formulate
the contract of an atomic component. Further discussions
are given in the rest of the paper.

We implement a component-based version of the ground
fuel management system by applying the X-MAN com-
ponent framework, and verify the given properties of the
system by using the compositional verification approach
adapted to this framework. The details of the component
implementation and compositional verification on the MR
operation of this system are presented in the following
subsections.

B. X-MAN Modeling of the Manual Refuel Example

In X-MAN component modelling, systems are built by
composing component instances which are instantiated from
component designs in the repository. We will make use of
five atomic component designs to model the component-
based MR system in X-MAN (as shown in Fig. 3). These
design components are Tank, Controller, Evaluator, and
PrAbort, and PrIdling. PrAbort models the computation
when an operation mode of the ground fuel transfer system
aborts. Similarly, PrIdling encapsulates the computation
when an operation becomes ilde. The final 2 components are
relatively simple in our case study, basically returning the
output of the component with some constant values, so, we
omit their description here, and concentrate on the remaining
3 components.

• Tank: This component maintains some stored state vari-
ables which represent a mass of fuel in a particular tank.
Fuel output and inlet are modelled by the setting of
arguments corresponding to each of 3 ports. A postive
mass represents fuel input to the tank, negative signifies
outputs. The tank component contains an internally
selected maximum-mass figure. Input of a fuel mass
which causes this figure to be exceeded results in an
overflow mass being outputted. The component also
outputs the current mass, states and status of pumps
and valves of each tank.

• Controller: calculates the fuel flow between four in-
stances of the Tank component, modelling the function-
ality of the pumps, valves and pipes linking them. The
outputs of each tank along with the command signals
for each pump and valve are fed to this component.

• Evaluator: accepts the system inputs and evaluates
the right operation mode based on the inputs. The
evaluation logic is represented as the first-order logic
formula in this case. It outputs the evaluation result.

X-MAN model system shown in Figure 3 makes use of 8
atomic component instances, and 5 composite components,
involving three different kinds of composition connectors
– Pipe, Selector and Sequencer. Firstly, we compose four
instances of the design component Tank: LTank, CTank,
RTank, STank, which model LWT, CWT, RWT and SP re-
spectively, into a composite component named TanksReader
using the Sequencer connector Seq reader. In the same
way, these four component instances are composed together
into another composite component named as TanksWriter
using the connector Seq writer. Thus, every tank instance
is accessed twice for each iteration of the model. Next,
TanksReader, an instance of Controller named as CTRL,
and TanksWriter are further composed together into a single
larger composite component In Process Pipe by a Pipe
connector Pipe1, which models the In Process operation.
Then, In Process Pipe is composed with the component
A, which is the instantiation of the design PrAbort, and
the component I, which is the intantiation of PrIdle, by
the Selector connector Sel0 to construct the more complex
composite component MR Process. Finally, by means of
another Pipe connector Pipe0, MR Process is composed
with the component EV, which is an instantiation of the
design component Evaluator.

The model behaves as follows at run-time: when a call
(with inputs) reaches the top-level connector Pipe0, the
connector first calls the atomic component EV with its
required inputs and passes the outputs to the Sel0 connector.
Based on the values passed, Sel0 evaluates the selection
condition in order to choose among the composite compo-
nents In Process Pipe, A or I. If In Process Pipe is chosen,
TanksReader is first called and its monitoring outputs are
passed to CTRL, then finally the computed command ouputs
of CTRL are fed into TanksWriter. When either TanksReader
or TanksWriter is executed, the LTank, CTank, RTank, STank
are accessed in sequence, but the usage of the outputs from
these Tank instances is different. For instance, TanksReader
manipulates the outputs which represent the current mass,
the state and status of the tank, while TanksWriter uses those
outputs that correspond to the handlers of the pump and
valve of each tank. If A is chosen, the model starts running
as the Abort operation mode in MR. Otherwise, I is chosen
to simulate the Idle behaviour of MR.
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C. Component-based Verification of the Manual Refuel Ex-
ample

Consider the atomic component LTank of the MR mod-
elling system. It contains 6 contracts: 3 of these specify the
integer ranges of the outputs parameters, the other 2 describe
the conditions under which fuel may be added without
overflow occuring, and the final contract relates to the
minimum and maximum execution time of the component.
We use one contract cMassRange for the component LTank
as an example:

Contract(cMassRange) {
Inputs: iAddedMass : int
Ouputs: oMass : int , oMaxMass : int
Pre-condition: true
Post-condition: oMass ≥ 0 ∧

oMass ≤ oMaxMass
}

Two integer outputs are used in this contract. oMass
reflects the current fuel mass of the tank, and oMaxMass
represents the internally selected maximum mass figure.
The Pre-condition of this contract is true which means no
assumption of the component inputs is made. The corre-
sponding Post-condition requires that oMass must always
be a positive value and oMass must never exceed the value
of oMaxMass after the execution of the LTank component.
As a further example, the contract for specifying the extra-
functional timing property of this component uses the spe-
cial parameters preTime and postTime, which are globally
accessible throughout the component, to describe the timing
constraint as follows.

Contract(cTankTiming) {
Inputs:
Ouputs:
Pre-condition: true
Post-condition: postTime ≤ preTime + 5 ∧

postTime ≥ preTime + 1
}

According to this contract, the execution time (in seconds)
of this contract must always fall within the range [1, 5]
under any combinations of inputs. In addition to the basic
Range-Contract of output variables and timing-Contract as
introduced above, some component contracts formulate the
complex data constraints between model inputs and outputs
that are derived from the system requirement. For instance,
the contract for the Controller component instance CRTL
is as follows:

Contract(cFuelConservationController ) {
Inputs: iMass[4] : int ,
Ouputs: oAddedMass[4] : int
Pre-condition: iMass[0] ≥ 0 ∧ iMass[1] ≥ 0 ∧

iMass[2] ≥ 0 ∧ iMass[3] ≥ 0
Post-condition: oAddedMass[0 ] +

oAddedMass[1] +
oAddedMass[2] +
oAddedMass[3] = 0

}

In this contract for CTRL, the input parameter iMass is an
Integer array which is passed from the composite component
Seq reader. Each element corresponds to the output param-
eter oMass of LTank, CTank,RTank,STank respectively. The
output parameter oAddedMass is also an Integer array which
is passed to the composite component Seq writer. And each
element corresponds to the input parameter iAddedMass of
four Tank component instances. This Post-condtion of this
contract requires that the fuel mass must be conserved in
the CTRL.

Vertical Verification Phase: We apply the software Model
Checker CBMC to formally verify that the implementation
of every atomic component in MR ( 8 components in total)
satisfies its corresponding contracts. For instance, we check
that the C implementation of the component CTRL satisfies
the post-condition specified in the contract cFuelConserva-
tionController given above, under the assumption that the
input parameters adhere to the Pre-condition constraint. Our
verification tool first automatically instruments the following
assumption statement at the beginning of the implementation
code.

assume(cFuelConservation.Pre − condition);

and, the following assertion at the end of the code.

assert(cFuelConservation.Post − condition);

Then, CBMC is applied to verify the instrumented code.
Due to the exhaustive search within the unwinding depth

and precise modeling of data variables, CBMC can detect
non-trivial corner case bugs, which eluded discovery during
testing by means of a conventional test-suite derived from
the requirements. As an example, consider the following
code fragment from the CTRL implementation where the
variables have been renamed.

const int sink num = 2 ; // ∗ ∗ ∗ ∗
...
int val a = a/sink num; ∗
int val a remainder = a%b;
...
if(v open){
val c = val a;

}
else{
val c = 0 ;

}
...
if(val c > 0 ){
val c = val c + val a remainder ;

}
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...

The variable a models a total amount of flow that is
distributed between a given number of sinks. The amount
is given as an integer quantity, and there can therefore be a
remainder (val a remainder), which is to be apportioned
to the valve flow val c. Consider the special execution trace
when

a = 1 ; v open = 1 ;

Then,
val a = 0 ; val a remainder = 1 ; val c = 0 ;

i.e., the remainder is non-zero but is not apportioned to the
valve flow val c. The buggy value of val c propagates to
the outputs and causes the violation of the Post-condition of
cFuelConservation. The variables a and v open are both
internal variables. It is difficult for a conventional testing
technique to find the primary inputs stimuli that could
observe this corner case scenario where a is set to 1 and
v open is set to be True at the same time. Consequently, the
error was missed by the conventional test suite, while CBMC
quickly identifies an erroneous execution trace as above.
Analyses revealed that the bug occurred because the code
was adopted from a similar algorithm using floating-point
arithmetic, and did not handle integer division truncation
properly.

Horizontal Verification Phase: After the contracts of all
components have been verified, we can start horizontal
verification, which checks the properties of the modeling
system based on the verified contracts of the components and
their composite relationships. For instance, given a system C
composed of two verified components A and B connected by
a Selector, we combine the post-conditions in the contracts
of A and B as follows:

f = (selC-cond ∧ postA) ∨ (¬selC-cond ∧ postB)

where postA and postB denote the post-conditions of com-
ponents A and B, respectively. selC-cond is the condition
that the sub-component is chosen in the case of using
Selector connector. In this example, if selC-cond is true,
component A is selected for execution; otherwise, com-
ponent B is selected. For the composite systems using
other connectors, the X-MAN-Verifier can also automati-
cally derive the formula f from the proved contracts of
sub-components, according to the composition behavious of
the corresponding connectors with respect to the properties
under verification.

Then, the X-MAN-Verifier checks whether f implies
postC . If so, we have proven that the component C satisfies
its contract; otherwise the contract may or may not hold. The
X-MAN-Verifier can produce a trace that demonstrates how
the component C fails to respect its contract. For a given
timing property

postTime < preTime + 55

for MR, the X-MAN-Verifier returns hold. On the other hand,
the timing property

postTime < preTime + 50

may be violated and the tool provides a counterexample.
We can conclude that the MR system is guaranteed to finish
execution within 55 time steps, but may exceed 50 time
steps. The counterexample extracted is as follows:

Inputs :
in0 = 0, ..., in3 = 0;
preT ime = 0;

−−−−−−−−−−−−
CallingEC
Inputs :

preT ime = 0,
Outputs :
value = 1;
postT ime = 5;

−−−−−−−−−−−−
CallingLA
....
−−−−−−−−−−−−
Outputs :
out0 = 1, ..., out4 = 1;
postT ime = 53;

This trace shows the system inputs and outputs, preTime
and postTime of MR, and the components on the execution
trace with their inputs, ouputs, preTime and postTime.

VI. CONCLUSIONS

In this paper, we proposed a new compositional design
and verification methodology based on X-MAN using formal
methods, and investigate its applicability to the safety-
critical embedded systems using a case study implementing
the ground fueling scenario of an aircraft.

Future work includes the evaluation of the framework
using models that utilize the support for IEEE floating-point
arithmetic [6]. Further research will include the development
of test-suite generation algorithms that exploit the strong
isolation of the components and the information about the
structure of their composition, e.g., pursuing ideas similar
to those that have been applied to Simulink dataflow dia-
grams [14].
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[14] N. He, P. Rümmer, and D. Kroening. Test-case generation for
embedded Simulink via formal concept analysis. In Design
Automation Conference (DAC), pages 224–229. ACM, 2011.

[15] D. Kroening and O. Strichman. Decision Procedures – An
Algorithmic Point of View. Springer (Theoretical Computer
Science series), 2008.

[16] K.-K. Lau, P. V. Elizondo, and Z. Wang. Exogenous con-
nectors for software components. In Proc. 8th Int. Symp.
on Component-based Software Engineering, pages 90–106.
Springer, 2005.

[17] K.-K. Lau, M. Ornaghi, and Z. Wang. A software component
model and its preliminary formalisation. In Proc. 4th Inter-
national Symposium on Formal Methods for Components and
Objects, volume 4111 of LNCS, pages 1–21. Springer, 2006.

[18] B. Meyer. Contracts for components. Software Development,
8(7):51–53, 2000.

[19] S. Quinton and S. Graf. Contract-based verification of
hierarchical systems of components. In Intl. Conference on
Software Engineering and Formal Methods (SEFM), pages
377–381. IEEE, 2008.
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APPENDIX

Here we show some screenshots of the X-MAN tool
during the design and verification of the Ground Fuel
Management System.

Figure 4 shows the design of an atomic component.

Figure 4. Component design.

Figure 5 shows the repository of (atomic) components that
have been built.

Figure 5. Component repository.
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Figure 6 shows the design of the system, using pre-defined
(atomic) components from the repository.

Figure 6. System assembly from repository components.

Figure 7 shows the verifier tool in action, verifying the
contract of an atomic component.

Figure 7. Component verification.

Figure 8 shows the verifier tool in action, verifying a
contract at system level.

Figure 8. System verification.
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