The Princess Input Language
(ApInput)
Philipp Rimmer
Department of Information Technology, Uppsala University, Sweden

December 1, 2017

This document was automatically generated by the BNF-Converter, with
some manual modifications. It was generated together with the lexer, the
parser, and the abstract syntax module, which guarantees that the document
matches with the implementation of the language.

The lexical structure of ApInput

Identifiers

Identifiers (Ident) are unquoted strings beginning with a letter, followed by
any combination of letters, digits, and the characters _ ’, reserved words
excluded.

Literals

IntLit literals are recognized by the regular expression (digit)+

Reserved words and symbols

The set of reserved words is the set of terminals appearing in the grammar.
Those reserved words that consist of non-letter characters are called sym-
bols, and they are treated in a different way from those that are similar to
identifiers. The lexer follows rules familiar from languages like Haskell, C,
and Java, including longest match and spacing conventions.

The reserved words used in ApInput are the following:

bool bv false
inf int mod
nat signed true

The symbols used in ApInput are the following:

\problem { }
\functions \universalConstants \predicates
\interpolant ; \existentialConstants
\metaVariables <—> —>

<- | &

! \abs \max

\min \distinct \as

\eps \part

L] +

— * /

b B \if

() \then

\else

\forall \exists =

1= <= >=

< > s

\partial \relational \sorts
\size \negMatch \noMatch
Comments

Single-line comments begin with //.
Multiple-line comments are enclosed with /* and */.

The syntactic structure of ApInput

Non-terminals are enclosed between (and). The symbols ::= (production),
| (union) and e (empty rule) belong to the BNF notation. All other symbols
are terminals.

(Entry) == (API)

| (Expression)
(API) := (ListBlock)
(ListBlock) == €

\ (Block) (ListBlock)

(Block) ::=

\problem { (Expression) }

\sorts { (ListDeclSortC) }

\functions { (ListDeclFunC) }
(ExConstantsSec) { (ListDeclConstantC') }
\universalConstants { (ListDeclConstantC) }
\predicates { (ListDeclPredC) }
\interpolant { (Listldent) ; (ListIdent) }

(ExConstantsSec) := \existentialConstants

(Expression)

(Expressionl)

(Expression2)

(Expression3)

(Expression4)

(Expression5)

(Expression6)

(Expression?)

(Expression8)
(Expression8)

| \metaVariables

= (Expression) <—> (Expressionl)

(Expressionl)

Expression2) —> (Expressionl)
Expressionl) <— (Expression2)
Expression2

Expression3

Expression3) & (Expressiond)

()
()
()
= (Expression2) | (Expression3)
()
()
(Expression4)

= | (Expressiond)

| (Quant) (DeclBinder) (Expression4)

| \eps (DeclSingleVarC') ; (Expression4)
| { (ListArgC) } (Expression4)

| \part [(Ident)] (Expressiond)

| (Expression5)

Expression6) (RelSym) (Expression6)
Expression6

()
()
(Expression6) + (Expression?7)
(Expression6) — (Expression7)
| (Expression7)
(Expression7) * (Expression8)
(Expression7) / (Expression§)
(Expression7) % (Expression8)
(Expression8)

m= \as [(Type) 1 (Expression8)
=+ (Expression9)

| — (Expression9)

| (Expression10) . \as [(Type)]
| (Expression9)

(Expression9) := (Expression9) ~ (Expressionl0)
\ (Expressionl0)

(Expressionl10) := \if ((Expression)) \then ((Expression)) \else ((Expression))
| \abs ((Expression))

| \max (OptArgs)

| \min (OptArgs)

| \distinct (OptArgs)

| \size ((Expression))

| (Ident) (OptArgs)

| (Expression10) . (Ident)
|

|

|

true
false
(IntLit)
((Expression))
(Quant) == \forall
| \exists
(RelSym) == =
=
<=
| >=
\ <
| >
(OptArgs) == ¢
| ((ListArgC))
(ArgC) == (Expression)
(ListArgC) == €
| (ArgC)
| (ArgC) , (ListArgC)
(DeclConstC) == (Type) (Listldent)
(ListIdent) ::= (Ident)
| (Ident) , (ListIdent)
(DeclSingleVarC) == (Type) (Ident)
(DeclVarC) == (Type) (Listldent)
(DeclBinder) ::= (DeclVarC) ;

| ((ListDeclVarC))

(ListDeclVarC) := (DeclVarC)
| (DeclVarC') ; (ListDeclVarC')

(DeclFunC) := (ListFunOption) (DeclConstC')
| (ListFunOption) (Type) (Ident) (FormalArgsC') (OptBody)
(ListDeclFunC) := €
] (DeclFunC') ; (ListDeclFunC)
(FunOption) == \partial
| \relational
(ListFunOption) == €
] (FunOption) (ListFunOption)
(DeclSortC) ::= (Ident) { (ListDeclCtorC) }
| (Ident)
(ListDeclSortC) == €
] (DeclSortC') ; (ListDeclSortC')
(DeclCtorC) == (Ident) (OptFormalArgs)
(ListDeclCtorC) == ¢
| (DecICtorC) ; (ListDecICtorC)
(DeclConstantC) ::= (DeclConstC')
(ListDeclConstantC) == ¢
| (DeclConstantC) ; (ListDeclConstantC')
(DeclPredC) ::= (ListPredOption) (Ident) (OptFormalArgs) (OptBody)
(ListDeclPredC) := €
| (DeclPredC) ; (ListDeclPredC')
(OptFormalArgs) == ¢
| (FormalArgsC)
(FormalArgsC) == ((ListArgTypeC'))
(ArgTypeC) == (Type)
] (Type) (Ident)
(ListArgTypeC) == (ArgTypeC)
| (ArgTypeC) , (ListArgTypeC)
(PredOption) := \negMatch
| \noMatch

(ListPredOption) == €
| (PredOption) (ListPredOption)

(OptBody) == { (Expression) }
] €
(Type) == int
nat
int [(IntervalLower) , (IntervalUpper)]
bool

bv [(IntLit)]

|
|
|
| mod [(IntervalLower) , (IntervalUpper)]
|
| signed bv [(IntLit)]

\

(Ident)
(IntervalLower) = — inf
| (IntLit)
| — (IntLit)
(IntervalUpper) := inf
| (IntLit)
| — (IntLit)

